

Welcome to pvl’s documentation!

Contents:

	pvl
	Installation

	Basic Usage

	Contributing

	Parsing PVL text
	From a File

	From a String

	From a URL

	Return non-standard objects

	Writing out PVL text
	Writing PVL Text to a File

	Writing PVL Text to a String

	Quantities: Values and Units
	Getting other quantity objects from PVL text

	Writing out other quantity objects to PVL text

	astropy.units.Quantity

	pint.Quantity

	Utility Programs
	pvl_translate

	pvl_validate

	Standards & Specifications
	Parameter Value Language (PVL)

	Object Description Language (ODL)

	PDS3 Standard

	ISIS Cube Label format

	pvl
	pvl package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	What to expect

	Rules for Merging Pull Requests

	PVL People

	Credits
	Authors

	Acknowledgements

	History
	Not Yet Released

	1.3.2 (2022-02-05)

	1.3.1 (2022-02-05)

	1.3.0 (2021-09-10)

	1.2.1 (2021-05-31)

	1.2.0 (2021-03-27)

	1.1.0 (2020-12-04)

	1.0.1 (2020-09-21)

	1.0.0 (2020-08-23)

	1.0.0-alpha.9 (2020-08-18)

	1.0.0-alpha.8 (2020-08-01)

	1.0.0-alpha.7 (2020-07-29)

	1.0.0-alpha.6 (2020-07-27)

	1.0.0-alpha.5 (2020-05-30)

	1.0.0.-alpha.4 (2020-05-29)

	1.0.0-alpha.3 (2020-05-28)

	1.0.0-alpha.2 (2020-04-18)

	1.0.0-alpha.1 (2020-04-17)

	1.0.0-alpha (winter 2019-2020)

	0.3.0 (2017-06-28)

	0.2.0 (2015-08-13)

	0.1.1 (2015-06-01)

	0.1.0 (2015-05-30)

Indices and tables

	Index

	Module Index

	Search Page

pvl

[image: Documentation Status]
 [https://pvl.readthedocs.io/en/latest/?badge=latest][image: _images/badge.svg]
 [https://github.com/planetarypy/pvl/actions][image: Codecov coverage]
 [https://codecov.io/gh/planetarypy/pvl][image: PyPI version]
 [https://pypi.python.org/pypi/pvl][image: PyPI Downloads/month]
 [https://pypi.python.org/pypi/pvl][image: conda-forge version]
 [https://anaconda.org/conda-forge/pvl][image: conda-forge downloads]
 [https://anaconda.org/conda-forge/pvl]Python implementation of a PVL (Parameter Value Language) library.

	Free software: BSD license

	Documentation: http://pvl.readthedocs.org.

	Support for Python 3.6 and higher (avaiable via pypi and conda).

	PlanetaryPy [https://planetarypy.org] Affiliate Package.

PVL is a markup language, like JSON or YAML, commonly employed for
entries in the Planetary Data System used by NASA to archive
mission data, among other uses. This package supports both encoding
and decoding a variety of PVL ‘flavors’ including PVL itself, ODL,
NASA PDS 3 Labels [https://pds.nasa.gov], and USGS ISIS Cube Labels [http://isis.astrogeology.usgs.gov/].

Installation

Can either install with pip or with conda.

To install with pip, at the command line:

$ pip install pvl

Directions for installing with conda-forge:

Installing pvl from the conda-forge channel can be achieved by adding
conda-forge to your channels with:

conda config --add channels conda-forge

Once the conda-forge channel has been enabled, pvl can be installed with:

conda install pvl

It is possible to list all of the versions of pvl available on your platform
with:

conda search pvl --channel conda-forge

Basic Usage

pvl exposes an API familiar to users of the standard library
json module.

Decoding is primarily done through pvl.load() for file-like objects and
pvl.loads() for strings:

>>> import pvl
>>> module = pvl.loads("""
... foo = bar
... items = (1, 2, 3)
... END
... """)
>>> print(module)
PVLModule([
 ('foo', 'bar')
 ('items', [1, 2, 3])
])
>>> print(module['foo'])
bar

There is also a pvl.loadu() to which you can provide the URL of a file that you would normally provide to
pvl.load().

You may also use pvl.load() to read PVL text directly from an image [https://github.com/planetarypy/pvl/raw/master/tests/data/pattern.cub] that begins with PVL text:

>>> import pvl
>>> label = pvl.load('tests/data/pattern.cub')
>>> print(label)
PVLModule([
 ('IsisCube',
 {'Core': {'Dimensions': {'Bands': 1,
 'Lines': 90,
 'Samples': 90},
 'Format': 'Tile',
 'Pixels': {'Base': 0.0,
 'ByteOrder': 'Lsb',
 'Multiplier': 1.0,
 'Type': 'Real'},
 'StartByte': 65537,
 'TileLines': 128,
 'TileSamples': 128}})
 ('Label', PVLObject([
 ('Bytes', 65536)
]))
])
>>> print(label['IsisCube']['Core']['StartByte'])
65537

Similarly, encoding Python objects as PVL text is done through
pvl.dump() and pvl.dumps():

>>> import pvl
>>> print(pvl.dumps({
... 'foo': 'bar',
... 'items': [1, 2, 3]
... }))
FOO = bar
ITEMS = (1, 2, 3)
END

pvl.PVLModule objects may also be pragmatically built up
to control the order of parameters as well as duplicate keys:

>>> import pvl
>>> module = pvl.PVLModule({'foo': 'bar'})
>>> module.append('items', [1, 2, 3])
>>> print(pvl.dumps(module))
FOO = bar
ITEMS = (1, 2, 3)
END

A pvl.PVLModule is a dict-like container that preserves
ordering as well as allows multiple values for the same key. It provides
similar semantics to a list of key/value tuples but
with dict-style access:

>>> import pvl
>>> module = pvl.PVLModule([
... ('foo', 'bar'),
... ('items', [1, 2, 3]),
... ('foo', 'remember me?'),
...])
>>> print(module['foo'])
bar
>>> print(module.getall('foo'))
['bar', 'remember me?']
>>> print(module.items())
ItemsView(PVLModule([
 ('foo', 'bar')
 ('items', [1, 2, 3])
 ('foo', 'remember me?')
]))
>>> print(pvl.dumps(module))
FOO = bar
ITEMS = (1, 2, 3)
FOO = 'remember me?'
END

However, there are some aspects to the default pvl.PVLModule that are not entirely
aligned with the modern Python 3 expectations of a Mapping object. If you would like
to experiment with a more Python-3-ic object, you could instantiate a
pvl.collections.PVLMultiDict object, or import pvl.new as pvl in your code
to have the loaders return objects of this type (and then easily switch back by just
changing the import statement). To learn more about how PVLMultiDict is different
from the existing OrderedMultiDict that PVLModule is derived from, please read the
new PVLMultiDict documentation.

The intent is for the loaders (pvl.load(), pvl.loads(), and pvl.loadu())
to be permissive, and attempt to parse as wide a variety of PVL text as
possible, including some kinds of ‘broken’ PVL text.

On the flip side, when dumping a Python object to PVL text (via
pvl.dumps() and pvl.dump()), the library will default
to writing PDS3-Standards-compliant PVL text, which in some ways
is the most restrictive, but the most likely version of PVL text
that you need if you’re writing it out (this is different from
pre-1.0 versions of pvl).

You can change this behavior by giving different parameters to the
loaders and dumpers that define the grammar of the PVL text that
you’re interested in, as well as custom parsers, decoders, and
encoders.

For more information on custom serilization and deseralization see the
full documentation [http://pvl.readthedocs.org].

Contributing

Feedback, issues, and contributions are always gratefully welcomed. See the
contributing guide [https://github.com/planetarypy/pvl/blob/master/CONTRIBUTING.rst] for details on how to help and setup a development
environment.

Parsing PVL text

Table of Contents

	From a File

	Simple Use

	Detailed Use

	From a String

	Simple Use

	Detailed Use

	From a URL

	Return non-standard objects

From a File

The pvl.load() function parses PVL text from a file or
stream and returns a dict [https://docs.python.org/3/library/stdtypes.html#dict]-like object (pvl.PVLModule
by default) containing information from that text. This documentation
will explain how to use the module as well as some sample code to
use the module efficiently.

Simple Use

How to use pvl.load() to get a single value:

>>> from pathlib import Path
>>> import pvl
>>> path = Path('tests/data/pds3/simple_image_1.lbl')
>>> pvl.load(path)['RECORD_TYPE']
'FIXED_LENGTH'

>>> import pvl
>>> img = 'tests/data/pds3/simple_image_1.lbl'
>>> pvl.load(img)['RECORD_TYPE']
'FIXED_LENGTH'

>>> import pvl
>>> img = 'tests/data/pds3/simple_image_1.lbl'
>>> with open(img, 'r+') as r:
... print(pvl.load(r)['RECORD_TYPE'])
FIXED_LENGTH

Detailed Use

To view the image label of an ISIS cube as a dictionary:

>>> import pvl
>>> img = 'tests/data/pattern.cub'
>>> module = pvl.load(img)
>>> print(module)
PVLModule([
 ('IsisCube',
 {'Core': {'Dimensions': {'Bands': 1,
 'Lines': 90,
 'Samples': 90},
 'Format': 'Tile',
 'Pixels': {'Base': 0.0,
 'ByteOrder': 'Lsb',
 'Multiplier': 1.0,
 'Type': 'Real'},
 'StartByte': 65537,
 'TileLines': 128,
 'TileSamples': 128}})
 ('Label', PVLObject([
 ('Bytes', 65536)
]))
])

Not all image labels are formatted the same so different labels will have
different information that you can obtain. To view what information you can
extract use the .keys() function:

>>> import pvl
>>> img = 'tests/data/pds3/simple_image_1.lbl'
>>> lbl = pvl.load(img)
>>> lbl.keys()
KeysView(['PDS_VERSION_ID', 'RECORD_TYPE', 'RECORD_BYTES', 'LABEL_RECORDS', 'FILE_RECORDS', '^IMAGE', 'IMAGE'])

… now you can just copy and paste from this list:

>>> lbl['RECORD_TYPE']
'FIXED_LENGTH'

The list .keys() returns is out of order, to see the keys in the
order of the dictionary use .items() function:

>>> import pvl
>>> img = 'tests/data/pds3/simple_image_1.lbl'
>>> for item in pvl.load(img).items():
... print(item[0])
PDS_VERSION_ID
RECORD_TYPE
RECORD_BYTES
LABEL_RECORDS
FILE_RECORDS
^IMAGE
IMAGE

We can take advantage of the fact .items() returns a list in order
and use the index number of the key instead of copying and pasting. This will
make extracting more than one piece of information at time more convenient. For
example, if you want to print out the first 5 pieces of information:

>>> import pvl
>>> img = 'tests/data/pds3/simple_image_1.lbl'
>>> pvl_items = pvl.load(img).items()
>>> for n in range(0, 5):
... print(pvl_items[n][0], pvl_items[n][1])
PDS_VERSION_ID PDS3
RECORD_TYPE FIXED_LENGTH
RECORD_BYTES 824
LABEL_RECORDS 1
FILE_RECORDS 601

… some values have sub-dictionaries. You can access those by:

>>> print(pvl.load(img)['IMAGE'].keys())
KeysView(['LINES', 'LINE_SAMPLES', 'SAMPLE_TYPE', 'SAMPLE_BITS', 'MEAN', 'MEDIAN', 'MINIMUM', 'MAXIMUM', 'STANDARD_DEVIATION', 'CHECKSUM'])
>>> print(pvl.load(img)['IMAGE']['SAMPLE_BITS'])
8

Another way of using pvl.load() is to use Python’s with open() command.
Otherwise using this method is very similar to using the methods described
above:

>>> import pvl
>>> with open('tests/data/pattern.cub','r') as r:
... print(pvl.load(r)['Label']['Bytes'])
65536

From a String

The pvl.loads() function returns a Python object (typically a
pvl.PVLModule object which is dict [https://docs.python.org/3/library/stdtypes.html#dict]-like) based on
parsing the PVL text in the string parameter that it is given.

Simple Use

How to use pvl.loads():

>>> import pvl
>>> s = """String = 'containing the label of the image'
... key = value
... END
... """
>>> pvl.loads(s).keys()
KeysView(['String', 'key'])

>>> pvl.loads(s)['key']
'value'

Detailed Use

To view the image label dictionary:

>>> import pvl
>>> string = """Object = IsisCube
... Object = Core
... StartByte = 65537
... Format = Tile
... TileSamples = 128
... TileLines = 128
...
... End_Object
... End_Object
...
... Object = Label
... Bytes = 65536
... End_Object
... End"""
>>> print(pvl.loads(string))
PVLModule([
 ('IsisCube',
 {'Core': {'Format': 'Tile',
 'StartByte': 65537,
 'TileLines': 128,
 'TileSamples': 128}})
 ('Label', PVLObject([
 ('Bytes', 65536)
]))
])

… to view the keys available:

>>> print(pvl.loads(string).keys())
KeysView(['IsisCube', 'Label'])

… and to see the information contained in the keys:

>>> print(pvl.loads(string)['Label'])
PVLObject([
 ('Bytes', 65536)
])

… and what is in the sub-dictionary:

>>> print(pvl.loads(string)['Label']['Bytes'])
65536

By default, pvl.loads() and pvl.load() are very permissive,
and do their best to attempt to parse a wide variety of PVL ‘flavors.’

If a parsed label has a parameter with a missing value, the default
behavior of these functions will be to assign a
pvl.parser.EmptyValueAtLine object as the value:

>>> string = """
... Object = Label
... A =
... End_Object
... End"""

>>> print(pvl.loads(string))
PVLModule([
 ('Label',
 {'A': EmptyValueAtLine(3 does not have a value. Treat as an empty string)})
])

Stricter parsing can be accomplished by passing a different grammar object
(e.g. pvl.grammar.PVLGrammar, pvl.grammar.ODLGrammar) to
pvl.loads() or pvl.load():

>>> import pvl
>>> some_pvl = """Comments = "PVL and ODL only allow /* */ comments"
... /* like this */
... # but people use hash-comments all the time
... END
... """
>>> print(pvl.loads(some_pvl))
PVLModule([
 ('Comments', 'PVL and ODL only allow /* */ comments')
])
>>> pvl.loads(some_pvl, grammar=pvl.grammar.PVLGrammar())
Traceback (most recent call last):
 ...
pvl.exceptions.LexerError: (LexerError(...), 'Expecting an Aggregation Block, an Assignment Statement, or an End Statement, but found "#" : line 3 column 1 (char 67) near "like this */\n# but people"')

From a URL

The pvl.loadu() function returns a Python object (typically a
pvl.PVLModule object which is dict [https://docs.python.org/3/library/stdtypes.html#dict]-like) based on
parsing the PVL text in the data returned from a URL.

This is very similar to parsing PVL text from a file, but you use
pvl.loadu() instead:

>>> import pvl
>>> url = 'https://hirise-pds.lpl.arizona.edu/PDS/RDR/ESP/ORB_017100_017199/ESP_017173_1715/ESP_017173_1715_RED.LBL'
>>> pvl.loadu(url)['VIEWING_PARAMETERS']['PHASE_ANGLE']
Quantity(value=50.784875, units='DEG')

Of course, other kinds of URLs, like file, ftp, rsync, sftp and more can be used.

Return non-standard objects

The “loaders” return a dict-like filled with Python objects based on the types inferred from the
PVL-text. Sometimes you may want the pvl library to return different types in the dict-like,
and pvl has some limited capacity for that (so far just real and quantity types).

Normally real number values in the PVL-text will be returned as Python float [https://docs.python.org/3/library/functions.html#float] objects.
However, what if you wanted all of the real values to be returned in the dict-like as Python
decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] objects (because you wanted to preserve numeric precision)? You can
do that by providing the object type you want via the real_cls argument of a decoder constructor,
like so:

>>> from decimal import Decimal
>>> import pvl
>>> text = "gigawatts = 1.210"
>>>
>>> flo = pvl.loads(text)
>>> print(flo)
PVLModule([
 ('gigawatts', 1.21)
])
>>>
>>> print(type(flo["gigawatts"]))
<class 'float'>
>>> dec = pvl.loads(text, decoder=pvl.decoder.OmniDecoder(real_cls=Decimal))
>>> print(dec)
PVLModule([
 ('gigawatts', Decimal('1.210'))
])
>>> print(type(dec["gigawatts"]))
<class 'decimal.Decimal'>

Any class that can be passed a str [https://docs.python.org/3/library/stdtypes.html#str] object to initialize an object can be provided to
real_cls, but it should emit a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if it is given a string that should not
be converted to a real number value.

To learn more about quantity classes in pvl, please see Quantities: Values and Units.

Writing out PVL text

This documentation explains how you can use pvl.dump() and
pvl.dumps() so you can change, add, and/or write out a Python
dict [https://docs.python.org/3/library/stdtypes.html#dict]-like object as PVL text either to a str [https://docs.python.org/3/library/stdtypes.html#str] or
a file. This documentation assumes that you’ve read about how to
parse PVL text and know how pvl.load() and
pvl.loads() work.

The examples primarily use an ISIS Cube image label format, which
typically doesn’t conform to PDS 3 standards, so pay attention to
the differences between the PVL text that is loaded, versus the PDS
3-compliant PVL text that is dumped.

However, this library can write/alter any PVL compliant label.

Table of Contents

	Writing PVL Text to a File

	Simple Use

	Changing A Key

	Writing PVL Text to a String

	Simple Use

	Adding A Key

	Example with an ISIS cube file

	PVL text for ISIS program consumption

	Pre-1.0 pvl dump behavior

Writing PVL Text to a File

The pvl.dump() function allows you to write out a dict [https://docs.python.org/3/library/stdtypes.html#dict]-like
Python object (typically a pvl.PVLModule object) to a file as PVL
text.

Simple Use

Read a label from a file:

>>> import pvl
>>> pvl_file = 'tests/data/pds3/tiny1.lbl'
>>> label = pvl.load(pvl_file)
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 'PDS3')
])

… then you can change a value:

>>> label['PDS_VERSION_ID'] = 42
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 42)
])

… then add keys to the label object:

>>> label['New_Key'] = 'New_Value'
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 42)
 ('New_Key', 'New_Value')
])

… and then write out the PVL text to a file:

>>> pvl.dump(label, 'new.lbl')
54

pvl.dump() returns the number of characters written to the file.

Changing A Key

More complicated parameter value change.

Load some PVL text from a file:

>>> import pvl
>>> img = 'tests/data/pattern.cub'
>>> label = pvl.load(img)
>>> print(label['IsisCube']['Core']['Format'])
Tile

… then change key ‘Format’ to ‘Changed_Value’:

>>> label['IsisCube']['Core']['Format'] = 'Changed_Value'

… then writing out file with new value:

>>> new_file = 'new.lbl'
>>> pvl.dump(label, new_file)
494

If you then try to show the changed value in the file, you’ll
get an error:

>>> new_label = pvl.load(new_file)
>>> print(new_label['IsisCube']['Core']['Format'])
Traceback (most recent call last):
 ...
KeyError: 'Format'

This is because the default for pvl.dump() and pvl.dumps() is to write out
PDS3-Standards-compliant PVL, in which the parameter values (but not the aggregation
block names) are uppercased:

>>> print(new_label['IsisCube']['Core'].keys())
KeysView(['STARTBYTE', 'FORMAT', 'TILESAMPLES', 'TILELINES', 'Dimensions', 'Pixels'])
>>> print(new_label['IsisCube']['Core']['FORMAT'])
Changed_Value

Clean up:

>>> import os
>>> os.remove(new_file)

Yes, this case difference is weird, yes, this means that you need
to be aware of the case of different keys in your pvl.PVLModule
objects.

Writing PVL Text to a String

The pvl.dumps() function allows you to convert a dict [https://docs.python.org/3/library/stdtypes.html#dict]-like
Python object (typically a pvl.PVLModule object) to a Python
str [https://docs.python.org/3/library/stdtypes.html#str] object which contains the PVL text.

Simple Use

Get started, as above:

>>> import pvl
>>> pvl_file = 'tests/data/pds3/tiny1.lbl'
>>> label = pvl.load(pvl_file)
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 'PDS3')
])

… then change a value, and add keys:

>>> label['PDS_VERSION_ID'] = 42
>>> label['New_Param'] = 'New_Value'
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 42)
 ('New_Param', 'New_Value')
])

… then write to a string:

>>> print(pvl.dumps(label))
PDS_VERSION_ID = 42
NEW_PARAM = New_Value
END

Here we can see the effects of the PDS3LabelEncoder in the default
behavior of pvl.dumps(): it uppercases the parameters, and
puts a blank line after the END statement. If we were to use the PVLEncoder,
you can see different behavior:

>>> print(pvl.dumps(label, encoder=pvl.encoder.PVLEncoder()))
PDS_VERSION_ID = 42;
New_Param = New_Value;
END;

Adding A Key

More complicated:

>>> import pvl
>>> pvl_file = 'tests/data/pds3/group1.lbl'
>>> label = pvl.load(pvl_file)
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 'PDS3')
 ('IMAGE',
 {'CHECKSUM': 25549531,
 'MAXIMUM': 255,
 'STANDARD_DEVIATION': 16.97019})
 ('SHUTTER_TIMES', PVLGroup([
 ('START', 1234567)
 ('STOP', 2123232)
]))
])

… then add a new key and value to a sub group:

>>> label['New_Key'] = 'New_Value'
>>> label['IMAGE']['New_SubKey'] = 'New_SubValue'
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 'PDS3')
 ('IMAGE',
 {'CHECKSUM': 25549531,
 'MAXIMUM': 255,
 'New_SubKey': 'New_SubValue',
 'STANDARD_DEVIATION': 16.97019})
 ('SHUTTER_TIMES', PVLGroup([
 ('START', 1234567)
 ('STOP', 2123232)
]))
 ('New_Key', 'New_Value')
])

… then when we dump, the default is to write PDS3 Labels, so the parameters are
uppercased:

>>> print(pvl.dumps(label))
PDS_VERSION_ID = PDS3
OBJECT = IMAGE
 MAXIMUM = 255
 STANDARD_DEVIATION = 16.97019
 CHECKSUM = 25549531
 NEW_SUBKEY = New_SubValue
END_OBJECT = IMAGE
GROUP = SHUTTER_TIMES
 START = 1234567
 STOP = 2123232
END_GROUP = SHUTTER_TIMES
NEW_KEY = New_Value
END

Example with an ISIS cube file

>>> import pvl
>>> img = 'tests/data/pattern.cub'
>>> label = pvl.load(img)
>>> label['New_Key'] = 'New_Value'
>>> label_string = pvl.dumps(label)
>>> print(label_string)
OBJECT = IsisCube
 OBJECT = Core
 STARTBYTE = 65537
 FORMAT = Tile
 TILESAMPLES = 128
 TILELINES = 128
 GROUP = Dimensions
 SAMPLES = 90
 LINES = 90
 BANDS = 1
 END_GROUP = Dimensions
 GROUP = Pixels
 TYPE = Real
 BYTEORDER = Lsb
 BASE = 0.0
 MULTIPLIER = 1.0
 END_GROUP = Pixels
 END_OBJECT = Core
END_OBJECT = IsisCube
OBJECT = Label
 BYTES = 65536
END_OBJECT = Label
NEW_KEY = New_Value
END

PVL text for ISIS program consumption

There are a number of ISIS programs that take PVL text files as a
way of allowing users to provide more detailed inputs. To write
PVL text that is readable by ISIS, you can use the
pvl.encoder.ISISEncoder. Here’s an example of creating a map file
used by the ISIS program cam2map. Since cam2map needs the
‘Mapping’ aggregation to be a PVL Group, you must use the
pvl.PVLGroup object to assign to ‘Mapping’ rather than
just a dict-like (which gets encoded as a PVL Object by default).
You’d normally use pvl.dump() to write to a file, but we use
pvl.dumps() here to show what you’d get:

>>> import pvl
>>> subsc_lat = 10
>>> subsc_lon = 10
>>> map_pvl = {'Mapping': pvl.PVLGroup({'ProjectionName': 'Orthographic',
... 'CenterLatitude': subsc_lat,
... 'CenterLongitude': subsc_lon})}
>>> print(pvl.dumps(map_pvl, encoder=pvl.encoder.ISISEncoder()))
Group = Mapping
 ProjectionName = Orthographic
 CenterLatitude = 10
 CenterLongitude = 10
End_Group = Mapping
END

Pre-1.0 pvl dump behavior

If you don’t like the new default behavior of writing out PDS3 Label
Compliant PVL text, then just using an encoder with some different
settings will get you the old style:

>>> import pvl
>>> img = 'tests/data/pattern.cub'
>>> label = pvl.load(img)
>>> print(pvl.dumps(label))
OBJECT = IsisCube
 OBJECT = Core
 STARTBYTE = 65537
 FORMAT = Tile
 TILESAMPLES = 128
 TILELINES = 128
 GROUP = Dimensions
 SAMPLES = 90
 LINES = 90
 BANDS = 1
 END_GROUP = Dimensions
 GROUP = Pixels
 TYPE = Real
 BYTEORDER = Lsb
 BASE = 0.0
 MULTIPLIER = 1.0
 END_GROUP = Pixels
 END_OBJECT = Core
END_OBJECT = IsisCube
OBJECT = Label
 BYTES = 65536
END_OBJECT = Label
END

>>> print(pvl.dumps(label, encoder=pvl.PVLEncoder(end_delimiter=False)))
...
BEGIN_OBJECT = IsisCube
 BEGIN_OBJECT = Core
 StartByte = 65537
 Format = Tile
 TileSamples = 128
 TileLines = 128
 BEGIN_GROUP = Dimensions
 Samples = 90
 Lines = 90
 Bands = 1
 END_GROUP = Dimensions
 BEGIN_GROUP = Pixels
 Type = Real
 ByteOrder = Lsb
 Base = 0.0
 Multiplier = 1.0
 END_GROUP = Pixels
 END_OBJECT = Core
END_OBJECT = IsisCube
BEGIN_OBJECT = Label
 Bytes = 65536
END_OBJECT = Label
END

… of course, to really get the true old behavior, you should also use
the carriage return/newline combination line endings, and encode the string as a
bytearray, since that is the Python type that the pre-1.0 library
produced:

>>> print(pvl.dumps(label, encoder=pvl.PVLEncoder(end_delimiter=False,
... newline='\r\n')).encode())
b'BEGIN_OBJECT = IsisCube\r\n BEGIN_OBJECT = Core\r\n StartByte = 65537\r\n Format = Tile\r\n TileSamples = 128\r\n TileLines = 128\r\n BEGIN_GROUP = Dimensions\r\n Samples = 90\r\n Lines = 90\r\n Bands = 1\r\n END_GROUP = Dimensions\r\n BEGIN_GROUP = Pixels\r\n Type = Real\r\n ByteOrder = Lsb\r\n Base = 0.0\r\n Multiplier = 1.0\r\n END_GROUP = Pixels\r\n END_OBJECT = Core\r\nEND_OBJECT = IsisCube\r\nBEGIN_OBJECT = Label\r\n Bytes = 65536\r\nEND_OBJECT = Label\r\nEND'

Quantities: Values and Units

The PVL specifications supports the notion that PVL Value Expressions
can contain an optional PVL Units Expression that follows the PVL
Value. This combination of information: a value followed by a unit
can be represented by a single object that we might call a quantity.

There is no fundamental Python object type that represents a value
and the units of that value. However, libraries like astropy
and pint have implemented “quantity” objects (and managed to
name them both Quantity, but they have slightly different interfaces).
In order to avoid optional dependencies, the pvl library provides
the pvl.collections.Quantity class, implemented as a
collections.namedtuple with a value and a unit
parameter. However, the unit parameter is just a string and
so the pvl quantity objects doesn’t have the super-powers that
the astropy and pint quntity objects do.

By default, this means that when PVL text is parsed by pvl.load()
or pvl.loads() and when a PVL Value followed by a PVL Units
Expression is encountered, a pvl.collections.Quantity object
will be placed in the returned dict-like.

Likewise when pvl.dump() or pvl.dumps() encounters a
pvl.collections.Quantity its value and units will be serialized
with the right PVL syntax.

However, the pvl library also supports the use of other quantity
objects.

Getting other quantity objects from PVL text

In order to get the parsing side of the pvl library to return
a particular kind of quantity object when a PVL Value followed by
a PVL Units Expression is found, you must pass the name of that
quantity class to the decoder’s quantity_cls argument. This
quantity class’s constructor must take two arguments, where the
first will receive the PVL Value (as whatever Python type pvl
determines it to be) and the second will receive the PVL Units
Expression (as a str).

Examples of how to do this with pvl.load() or pvl.loads()
are below for astropy and pint.

Depending on the PVL text that you are parsing, and the quantity
class that you are using, you may get errors if the quantity class
can’t accept the PVL Units Expression, or if the value part of
the quantity class can’t handle all of the possible types of PVL
Values (which can be Simple Values, Sets, or Sequences).

Writing out other quantity objects to PVL text

In order to get the encoding side of the pvl library to write out the
correct kind of PVL text based on some quantity object is more difficult
due to the wide variety of ways that quantity objects are written in 3rd
party libaries. At this time, the pvl library can properly encode
pvl.collecitons.Quantity, astropy.units.Quantity, and
pint.Quantity objects (or objects that pass an isinstance()
test for those objects). Any other kind of quantity object in the
data structure passed to pvl.dump() or pvl.dumps() will
just be encoded as a string.

Other types are possible, but require additions to the encoder in
use. The astropy.units.Quantity object is already handled
by the pvl library, but if it wasn’t, this is how you would
enable it. You just need the class name, the name of the
property on the class that yields the value or magnitude (for
astropy.units.Quantity that is value), and the property
that yields the units (for astropy.units.Quantity that is
unit). With those pieces in hand, we just need to instantiate
an encoder and add the new quantity class and the names of those
properties to it, and then pass it to pvl.dump() or
pvl.dumps() as follows:

>>> import pvl
>>> from astropy import units as u
>>> my_label = dict(length=u.Quantity(15, u.m), velocity=u.Quantity(0.5, u.m / u.s))
>>> my_encoder = pvl.PDSLabelEncoder()
>>> my_encoder.add_quantity_cls(u.Quantity, 'value', 'unit')
>>> print(pvl.dumps(my_label, encoder=my_encoder))
LENGTH = 15.0 <m>
VELOCITY = 0.5 <m / s>
END

astropy.units.Quantity

The Astropy Project has classes for handing Units and Quantities [https://docs.astropy.org/en/stable/units/].

The astropy.units.Quantity object can be returned in the data
structure returned from pvl.load() or pvl.loads(). Here is
an example:

>>> import pvl
>>> pvl_text = "length = 42 <m/s>"
>>> regular = pvl.loads(pvl_text)
>>> print(regular['length'])
Quantity(value=42, units='m/s')
>>> print(type(regular['length']))
<class 'pvl.collections.Quantity'>

>>> from pvl.decoder import OmniDecoder
>>> from astropy import units as u
>>> w_astropy = pvl.loads(pvl_text, decoder=OmniDecoder(quantity_cls=u.Quantity))
>>> print(w_astropy)
PVLModule([
 ('length', <Quantity 42. m / s>)
])
>>> print(type(w_astropy['length']))
<class 'astropy.units.quantity.Quantity'>

However, in our example file and in other files you may parse, the
units may be in upper case (e.g. KM, M), and by default, astropy will
not recognize the name of these units. It will raise a handy
exception, which, in turn, will be raised as a
pvl.parser.QuantityError that will look like this:

pvl.parser.QuantityError: 'KM' did not parse as unit: At col
0, KM is not a valid unit. Did you mean klm or km? If this is
meant to be a custom unit, define it with 'u.def_unit'. To have
it recognized inside a file reader or other code, enable it
with 'u.add_enabled_units'. For details, see
http://docs.astropy.org/en/latest/units/combining_and_defining.html

So, in order to parse our file, do this:

>>> import pvl
>>> from pvl.decoder import OmniDecoder
>>> from astropy import units as u
>>> pvl_file = 'tests/data/pds3/units1.lbl'
>>> km_upper = u.def_unit('KM', u.km)
>>> m_upper = u.def_unit('M', u.m)
>>> u.add_enabled_units([km_upper, m_upper])
<astropy.units.core._UnitContext object at ...
>>> label = pvl.load(pvl_file, decoder=OmniDecoder(quantity_cls=u.Quantity))
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 'PDS3')
 ('MSL:COMMENT', 'THING TEST')
 ('FLOAT_UNIT', <Quantity 0.414 KM>)
 ('INT_UNIT', <Quantity 4. M>)
])
>>> print(type(label['FLOAT_UNIT']))
<class 'astropy.units.quantity.Quantity'>

Similarly, astropy.units.Quantity objects can be encoded to PVL text
by pvl.dump() or pvl.dumps() without any particular special handling.
Here is an example:

>>> import pvl
>>> from astropy import units as u
>>> my_label = dict(length=u.Quantity(15, u.m), velocity=u.Quantity(0.5, u.m / u.s))
>>> print(pvl.dumps(my_label))
LENGTH = 15.0 <m>
VELOCITY = 0.5 <m / s>
END

pint.Quantity

The Pint library [http://pint.readthedocs.org] also deals with quantities.

The pint.Quantity object can also be returned in the data
structure returned from pvl.load() or pvl.loads() if you
would prefer to use those objects. Here is an example:

>>> import pvl
>>> pvl_text = "length = 42 <m/s>"
>>> from pvl.decoder import OmniDecoder
>>> import pint
>>> w_pint = pvl.loads(pvl_text, decoder=OmniDecoder(quantity_cls=pint.Quantity))
>>> print(w_pint)
PVLModule([
 ('length', <Quantity(42, 'meter / second')>)
])
>>> print(type(w_pint['length']))
<class 'pint.quantity.Quantity'>

Just as with astropy.units.Quantity, pint.Quantity doesn’t recognize
the upper case units, and will raise an error like this:

pint.errors.UndefinedUnitError: 'KM' is not defined in the unit registry

So, in order to parse our file with uppercase units, you can create
a units definition file to add aliases and units to the pint
‘registry’. When doing this programmatically note that if you define
a registry on-the-fly, you must use the registry’s Quantity to the
quantity_cls argument:

>>> import pvl
>>> from pvl.decoder import OmniDecoder
>>> import pint
>>> ureg = pint.UnitRegistry()
>>> ureg.define('kilo- = 1000 = K- = k-')
>>> ureg.define('@alias meter = M')
>>> pvl_file = 'tests/data/pds3/units1.lbl'
>>> label = pvl.load(pvl_file, decoder=OmniDecoder(quantity_cls=ureg.Quantity))
>>> print(label)
PVLModule([
 ('PDS_VERSION_ID', 'PDS3')
 ('MSL:COMMENT', 'THING TEST')
 ('FLOAT_UNIT', <Quantity(0.414, 'kilometer')>)
 ('INT_UNIT', <Quantity(4, 'meter')>)
])
>>> print(type(label['FLOAT_UNIT']))
<class 'pint.quantity.build_quantity_class.<locals>.Quantity'>

Similarly, pint.Quantity objects can be encoded to PVL text
by pvl.dump() or pvl.dumps():

>>> import pvl
>>> import pint
>>> ureg = pint.UnitRegistry()
>>> dist = 15 * ureg.m
>>> vel = 0.5 * ureg.m / ureg.second
>>> my_label = dict(length=dist, velocity=vel)
>>> print(pvl.dumps(my_label))
LENGTH = 15 <meter>
VELOCITY = 0.5 <meter / second>
END

Utility Programs

This library also provides some command-line utility programs to work with
PVL text.

pvl_translate

A program for converting PVL text to a specific PVL dialect.

The pvl_translate program will read a file with PVL text (any
of the kinds of files that pvl.load() reads) or STDIN and
will convert that PVL text to a particular PVL dialect. It is not
particularly robust, and if it cannot make simple conversions, it
will raise errors.

usage: pvl_translate [-h] -of {PDS3,ODL,ISIS,PVL,JSON} [--version]
 [infile] [outfile]

	
infile

	file containing PVL text to translate, defaults to STDIN.

	
outfile

	file to write translated PVL to, defaults to STDOUT.

	
-h, --help

	show this help message and exit

	
-of {PDS3,ODL,ISIS,PVL,JSON}, --output_format {PDS3,ODL,ISIS,PVL,JSON}

	Select the format to create the new file as.

	
--version

	show program’s version number and exit

In the examples below will all operate on the file with these contents:

PDS_VERSION_ID = PDS3

/* FILE DATA ELEMENTS */

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 824
LABEL_RECORDS = 1
FILE_RECORDS = 601

/* POINTERS TO DATA OBJECTS */

^IMAGE = 2

/* IMAGE DATA ELEMENTS */

OBJECT = IMAGE
 LINES = 600
 LINE_SAMPLES = 824
 SAMPLE_TYPE = MSB_INTEGER
 SAMPLE_BITS = 8
 MEAN = 51.67785396440129
 MEDIAN = 50.00000
 MINIMUM = 0
 MAXIMUM = 255
 STANDARD_DEVIATION = 16.97019
 CHECKSUM = 25549531
END_OBJECT = IMAGE

END

Convert to PDS3 (whitespace and comments get removed):

> pvl_translate -of PDS3 tests/data/pds3/simple_image_1.lbl
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 824
LABEL_RECORDS = 1
FILE_RECORDS = 601
^IMAGE = 2
OBJECT = IMAGE
 LINES = 600
 LINE_SAMPLES = 824
 SAMPLE_TYPE = MSB_INTEGER
 SAMPLE_BITS = 8
 MEAN = 51.67785396440129
 MEDIAN = 50.0
 MINIMUM = 0
 MAXIMUM = 255
 STANDARD_DEVIATION = 16.97019
 CHECKSUM = 25549531
END_OBJECT = IMAGE
END

Convert to PVL:

> pvl_translate -of PVL tests/data/pds3/simple_image_1.lbl
PDS_VERSION_ID = PDS3;
RECORD_TYPE = FIXED_LENGTH;
RECORD_BYTES = 824;
LABEL_RECORDS = 1;
FILE_RECORDS = 601;
^IMAGE = 2;
BEGIN_OBJECT = IMAGE;
 LINES = 600;
 LINE_SAMPLES = 824;
 SAMPLE_TYPE = MSB_INTEGER;
 SAMPLE_BITS = 8;
 MEAN = 51.67785396440129;
 MEDIAN = 50.0;
 MINIMUM = 0;
 MAXIMUM = 255;
 STANDARD_DEVIATION = 16.97019;
 CHECKSUM = 25549531;
END_OBJECT = IMAGE;
END;

Convert to JSON:

> pvl_translate -of JSON tests/data/pds3/simple_image_1.lbl
{"PDS_VERSION_ID": "PDS3", "RECORD_TYPE": "FIXED_LENGTH", "RECORD_BYTES": 824, "LABEL_RECORDS": 1, "FILE_RECORDS": 601, "^IMAGE": 2, "IMAGE": {"LINES": 600, "LINE_SAMPLES": 824, "SAMPLE_TYPE": "MSB_INTEGER", "SAMPLE_BITS": 8, "MEAN": 51.67785396440129, "MEDIAN": 50.0, "MINIMUM": 0, "MAXIMUM": 255, "STANDARD_DEVIATION": 16.97019, "CHECKSUM": 25549531}}

pvl_validate

A program for testing and validating PVL text.

The pvl_validate program will read a file with PVL text (any of
the kinds of files that pvl.load() reads) and will report
on which of the various PVL dialects were able to load that PVL
text, and then also reports on whether the pvl library can encode
the Python Objects back out to PVL text.

You can imagine some PVL text that could be loaded, but is not able
to be written out in a particular strict PVL dialect (like PDS3
labels).

usage: pvl_validate [-h] [-v] [--version] file [file ...]

	
file

	file containing PVL text to validate.

	
-h, --help

	show this help message and exit

	
-v, --verbose

	Will report the errors that are encountered. A second v will include tracebacks for non-pvl exceptions.

	
--version

	show program’s version number and exit

Validate one file:

> pvl_validate tests/data/pds3/simple_image_1.lbl
PDS3 | Loads | Encodes
ODL | Loads | Encodes
PVL | Loads | Encodes
ISIS | Loads | Encodes
Omni | Loads | Encodes
>

You can see here that the simple_image_1.lbl file can be
loaded and the resulting Python object encoded with each of the
PVL dialects that the pvl library knows.

A file with broken PVL text:

> pvl_validate tests/data/pds3/broken/broken1.lbl
PDS3 | does NOT load |
ODL | does NOT load |
PVL | does NOT load |
ISIS | Loads | Encodes
Omni | Loads | Encodes
>

Here, the PVL text in broken1.lbl cannot be loaded by the PDS3, ODL, or PVL dialects, to learn why
use -v:

> pvl_validate -v tests/data/pds3/broken/broken1.lbl
ERROR: PDS3 load error tests/data/pds3/broken/broken1.lbl (LexerError(...), 'Expecting an Aggregation Block, an Assignment Statement, or an End Statement, but found "=" : line 3 column 7 (char 23)')
ERROR: ODL load error tests/data/pds3/broken/broken1.lbl (LexerError(...), 'Expecting an Aggregation Block, an Assignment Statement, or an End Statement, but found "=" : line 3 column 7 (char 23)')
ERROR: PVL load error tests/data/pds3/broken/broken1.lbl (LexerError(...), 'Expecting an Aggregation Block, an Assignment Statement, or an End Statement, but found "=" : line 3 column 7 (char 23)')
PDS3 | does NOT load |
ODL | does NOT load |
PVL | does NOT load |
ISIS | Loads | Encodes
Omni | Loads | Encodes

This tells us that in these cases, there is a parameter with a
missing value. However, the OmniParser (the default, and also what
the ISIS dialect uses) has more tolerance for broken PVL text, and
is able to load it, and then write valid PVL back out.

Here’s a file which has some PVL text which is valid for some dialects, but not others:

> pvl_validate tests/data/pds3/dates.lbl
PDS3 | Loads | does NOT encode
ODL | Loads | Encodes
PVL | Loads | Encodes
ISIS | Loads | Encodes
Omni | Loads | Encodes
>

Here, pvl_validate indicates that it can load the file with all of the PVL dialects, and
can encode it back for most. What was the problem:

> pvl_validate -v tests/data/pds3/dates.lbl
ERROR: PDS3 encode error tests/data/pds3/dates.lbl PDS labels should only have UTC times, but this time has a timezone: 01:12:22+07:00
PDS3 | Loads | does NOT encode
ODL | Loads | Encodes
PVL | Loads | Encodes
ISIS | Loads | Encodes
Omni | Loads | Encodes

It indicates that it cannot encode the Python object out to the
PDS3 format because it contains a date with a different time zone
(which aren’t allowed in a PDS3 Label). So this is an example of
how the loaders are a little more permissive, but to really test
whether some PVL text is conformant, it also should be able to be
encoded.

In this case, if the user wants to write out a valid PDS3 label, they will have to do
some work to fix the value.

Validating a bunch of files:

> pvl_validate tests/data/pds3/*lbl
---------------------------------------+-----------+-----------+-----------+-----------+----------
File | PDS3 | ODL | PVL | ISIS | Omni
---------------------------------------+-----------+-----------+-----------+-----------+----------
tests/data/pds3/backslashes.lbl | L E | L E | L E | L E | L E
tests/data/pds3/based_integer1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/dates.lbl | L No E | L E | L E | L E | L E
tests/data/pds3/empty.lbl | L E | L E | L E | L E | L E
tests/data/pds3/float1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/float_unit1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/group1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/group2.lbl | L E | L E | L E | L E | L E
tests/data/pds3/group3.lbl | L E | L E | L E | L E | L E
tests/data/pds3/group4.lbl | L E | L E | L E | L E | L E
tests/data/pds3/namespaced_string1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/negative_float1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/negative_int1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/nested_object1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/nested_object2.lbl | L E | L E | L E | L E | L E
tests/data/pds3/scaled_real1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/sequence1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/sequence2.lbl | L E | L E | L E | L E | L E
tests/data/pds3/sequence3.lbl | L E | L E | L E | L E | L E
tests/data/pds3/sequence_units1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/set1.lbl | L No E | L E | L E | L E | L E
tests/data/pds3/set2.lbl | L No E | L E | L E | L E | L E
tests/data/pds3/simple_image_1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/simple_image_2.lbl | L E | L E | L E | L E | L E
tests/data/pds3/string2.lbl | L E | L E | L E | L E | L E
tests/data/pds3/string3.lbl | L E | L E | L E | L E | L E
tests/data/pds3/string4.lbl | L E | L E | L E | L E | L E
tests/data/pds3/tiny1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/tiny2.lbl | L E | L E | L E | L E | L E
tests/data/pds3/tiny3.lbl | L E | L E | L E | L E | L E
tests/data/pds3/tiny4.lbl | L E | L E | L E | L E | L E
tests/data/pds3/units1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/units2.lbl | L E | L E | L E | L E | L E
>

and with -v:

> pvl_validate -v tests/data/pds3/*lbl
ERROR: PDS3 encode error tests/data/pds3/dates.lbl PDS labels should only have UTC times, but this time has a timezone: 01:12:22+07:00
ERROR: PDS3 encode error tests/data/pds3/set1.lbl The PDS only allows integers and symbols in sets: {1.5}
ERROR: PDS3 encode error tests/data/pds3/set2.lbl The PDS only allows integers and symbols in sets: {2.33, 3.4}
---------------------------------------+-----------+-----------+-----------+-----------+----------
File | PDS3 | ODL | PVL | ISIS | Omni
---------------------------------------+-----------+-----------+-----------+-----------+----------
tests/data/pds3/backslashes.lbl | L E | L E | L E | L E | L E
tests/data/pds3/based_integer1.lbl | L E | L E | L E | L E | L E
tests/data/pds3/dates.lbl | L No E | L E | L E | L E | L E
tests/data/pds3/empty.lbl | L E | L E | L E | L E | L E
[... output truncated ...]

Standards & Specifications

Although many people use the term ‘PVL’ to describe parameter-value
text, they are often unaware that there are at least four different
‘dialects’ or ‘flavors’ of ‘PVL’. They are described below.

Unfortunately one of them is actually named PVL, so it is difficult
to distinguish when someone is using “PVL” to refer to the formal
specification versus when they are using “PVL” to refer to some
text that could be parsable as PVL.

It is important to not that the pvl module’s approach is: attempt
to read everything, but write out standards-compliant PDS3 labels by
default. That may not be the dialect of PVL-text that you want,
and if so, you can easily change it by specifying the encoder
parameter to the pvl.dump() or pvl.dumps() functions. In
general, you could write pvl.dump(somedictlike,
encoder=pvl.encoder.PVLEncoder()) to dump out PVL-specification
PVL-text. The options are: PVLEncoder(), ODLEncoder(), PDSLabelEncoder()
(the default), and ISISEncoder().

In the documentation for this library, we will attempt to provide
enough context for you to distinguish, but we will typically use
“PVL text” to refer to some generic text that may or may not conform
to one of the PVL ‘dialects’ or that could be converted into one
of them. We will also use pvl to refer to this Python library.

In practice, since people are not typcially aware of the formal PVL
specification, when most people say “PVL” they are most likely referring to
generic “PVL text.”

Parameter Value Language (PVL)

The definition of the Parameter Value Language (PVL) is based on
the Consultive Committee for Space Data Systems, and their
Parameter Value Language Specification (CCSD0006 and
CCSD0008), CCSDS 6441.0-B-2 referred to
as the Blue Book with a date of June 2000.

This formal definition of PVL is quite permissive, and usually forms
the base class of objects in this library.

Object Description Language (ODL)

The Object Description Language (ODL) is based on PVL, but adds
additional restrictions. It is defined in the PDS3 Standards
Reference (version 3.8, 27 Feb 2009) Chapter 12: Object Description
Language Specification and Usage.

However, even though ODL is specified by the PDS, by itself, it is
not the definition that PDS3 labels should conform to. By and
large, as a user, you are rarely interested in the ODL specification,
and mostly want to deal with the PDS3 Standard.

PDS3 Standard

The PDS3 Standard is also defined in the PDS3 Standards Reference
(version 3.8, 27 Feb 2009) Chapter 12: Object Description Language
Specification. The PDS3 Standard are mostly additional restrictions
on the base definition of ODL, and appear as additional notes or
sections in the document.

ISIS Cube Label format

The ISIS software has used a custom implementation (through at least
ISIS 3.9) to write PVL text into the labels of its cube files. This
PVL text does not strictly follow any of the published standards.
It was based on PDS3 ODL from the 1990s, but has some extensions
adopted from existing and prior data sets from ISIS2, PDS, JAXA,
ISRO, etc., and extensions used only within ISIS3 files (.cub,
.net). This is one of the reasons using ISIS cube files as an
archive format or PVL text written by ISIS as a submission to the
PDS has been strongly discouraged.

Since there is no specification, only a detailed analysis of the ISIS
software that writes its PVL text would yield a strategy for parsing it.

At this time, the loaders (pvl.loads() and pvl.load())
default to using the pvl.parser.OmniParser which should
be able to parse most forms of PVL text that ISIS writes out or
into its cube labels. However, this is very likely where a user
could run into errors (if there is something that isn’t supported),
and we welcome bug reports to help extend our coverage of this
flavor of PVL text.

pvl

	pvl package
	Submodules

	pvl.collections module

	pvl.decoder module

	pvl.encoder module

	pvl.exceptions module

	pvl.grammar module

	pvl.lexer module

	pvl.new module

	pvl.parser module

	pvl.pvl_translate module

	pvl.pvl_validate module

	pvl.token module

	Module contents

pvl package

Submodules

pvl.collections module

Parameter Value Language container datatypes providing enhancements
to Python general purpose built-in containers.

To enable efficient operations on parsed PVL text, we need an object
that acts as both a dict-like Mapping container and a list-like
Sequence container, essentially an ordered multi-dict. There is
no existing object or even an Abstract Base Class in the Python
Standard Library for such an object. So we define the
MutableMappingSequence ABC here, which is (as the name implies) an
abstract base class that implements both the Python MutableMapping
and Mutable Sequence ABCs. We also provide two implementations, the
OrderedMultiDict, and the newer PVLMultiDict.

Additionally, for PVL Values which also have an associated PVL Units
Expression, they need to be returned as a quantity object which contains
both a notion of a value and the units for that value. Again, there
is no fundamental Python type for a quantity, so we define the Quantity
class (formerly the Units class).

	
class pvl.collections.ItemsView(mapping)

	Bases: pvl.collections.MappingView

	
index(item)

	

	
class pvl.collections.KeysView(mapping)

	Bases: pvl.collections.MappingView

	
index(key)

	

	
class pvl.collections.MappingView(mapping)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
class pvl.collections.MutableMappingSequence

	Bases: collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping], collections.abc.MutableSequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence]

ABC for a mutable object that has both mapping and
sequence characteristics.

Must implement .getall(k) and .popall(k) since a MutableMappingSequence
can have many values for a single key, while .get(k) and
.pop(k) return and operate on a single value, the all
versions return and operate on all values in the MutableMappingSequence
with the key k.

Furthermore, .pop() without an argument should function as the
MutableSequence pop() function and pop the last value when considering
the MutableMappingSequence in a list-like manner.

	
append(key, value)

	S.append(value) – append value to the end of the sequence

	
getall(key)

	

	
popall(key)

	

	
class pvl.collections.OrderedMultiDict(*args, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict], pvl.collections.MutableMappingSequence

A dict like container.

This container preserves the original ordering as well as
allows multiple values for the same key. It provides similar
semantics to a list of tuples but with dict style
access.

Using __setitem__ syntax overwrites all fields with the
same key and __getitem__ will return the first value with
the key.

	
append(key, value)

	Adds a (name, value) pair, doesn’t overwrite the value if
it already exists.

	
clear() → None. Remove all items from D.

	

	
copy() → a shallow copy of D

	

	
discard(key)

	

	
extend(*args, **kwargs)

	Add key value pairs for an iterable.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
getall(key) → collections.abc.Sequence

	Returns a list of all the values for a named field.
Returns KeyError if the key doesn’t exist.

	
getlist(key) → collections.abc.Sequence

	Returns a list of all the values for the named field.
Returns an empty list if the key doesn’t exist.

	
insert(index: int, *args) → None

	Inserts at the index given by index.

The first positional argument will always be taken as the
index for insertion.

If three arguments are given, the second will be taken
as the key, and the third as the value to insert.

If only two arguments are given, the second must be a sequence.

If it is a sequence of pairs (such that every item in the sequence is
itself a sequence of length two), that sequence will be inserted
as key, value pairs.

If it happens to be a sequence of two items (the first of which is
not a sequence), the first will be taken as the key and the
second the value to insert.

	
insert_after(key, new_item: collections.abc.Iterable, instance=0)

	Insert an item after a key

	
insert_before(key, new_item: collections.abc.Iterable, instance=0)

	Insert an item before a key

	
items() → a set-like object providing a view on D's items

	

	
key_index(key, instance: int = 0) → int

	Get the index of the key to insert before or after.

	
keys() → a set-like object providing a view on D's keys

	

	
pop(*args, **kwargs)

	Removes all items with the specified key.

	
popall(key, default=<object object>)

	D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair as a

	2-tuple; but raise KeyError if D is empty.

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → an object providing a view on D's values

	

	
class pvl.collections.PVLAggregation(*args, **kwargs)

	Bases: pvl.collections.OrderedMultiDict

	
class pvl.collections.PVLGroup(*args, **kwargs)

	Bases: pvl.collections.PVLAggregation

	
class pvl.collections.PVLModule(*args, **kwargs)

	Bases: pvl.collections.OrderedMultiDict

	
class pvl.collections.PVLObject(*args, **kwargs)

	Bases: pvl.collections.PVLAggregation

	
class pvl.collections.Quantity

	Bases: pvl.collections.Quantity

A simple collections.namedtuple object to contain
a value and units parameter.

If you need more comprehensive units handling, you
may want to use the astropy.units.Quantity object,
the pint.Quantity object, or some other 3rd party
object. Please see the documentation on Quantities: Values and Units
for how to use 3rd party Quantity objects with pvl.

	
class pvl.collections.Units

	Bases: pvl.collections.Quantity

	
class pvl.collections.ValuesView(mapping)

	Bases: pvl.collections.MappingView

	
index(value)

	

	
pvl.collections.dict_delitem

	Delete self[key].

	
pvl.collections.dict_setitem

	Set self[key] to value.

pvl.decoder module

Parameter Value Language decoder.

The definition of PVL used in this module is based on the Consultive
Committee for Space Data Systems, and their Parameter Value
Language Specification (CCSD0006 and CCSD0008), CCSDS 6441.0-B-2,
referred to as the Blue Book with a date of June 2000.

A decoder deals with converting strings given to it (typically
by the parser) to the appropriate Python type.

	
class pvl.decoder.ODLDecoder(grammar=None, quantity_cls=None, real_cls=None)

	Bases: pvl.decoder.PVLDecoder

A decoder based on the rules in the PDS3 Standards Reference
(version 3.8, 27 Feb 2009) Chapter 12: Object Description
Language Specification and Usage.

Extends PVLDecoder, and if grammar is not specified, it will
default to an ODLGrammar() object.

	
decode_datetime(value: str)

	Extends parent function to also deal with datetimes
and times with a time zone offset.

If it cannot, it will raise a ValueError.

	
decode_non_decimal(value: str) → int

	Extends parent function by allowing the wider variety of
radix values that ODL permits over PVL.

	
decode_quoted_string(value: str) → str

	Extends parent function because the
ODL specification allows for a dash (-) line continuation
character that results in the dash, the line end, and any
leading whitespace on the next line to be removed. It also
allows for a sequence of format effectors surrounded by
spacing characters to be collapsed to a single space.

	
decode_unquoted_string(value: str) → str

	Extends parent function to provide the extra enforcement that only
ODL Identifier text may be unquoted as a value.

	
static is_identifier(value)

	Returns true if value is an ODL Identifier, false otherwise.

An ODL Identifier is composed of letters, digits, and underscores.
The first character must be a letter, and the last must not
be an underscore.

	
class pvl.decoder.OmniDecoder(grammar=None, quantity_cls=None, real_cls=None)

	Bases: pvl.decoder.ODLDecoder

A permissive decoder that attempts to parse all forms of
“PVL” that are thrown at it.

Extends ODLDecoder.

	
decode_datetime(value: str)

	Returns an appropriate Python datetime time, date, or datetime
object by using the 3rd party dateutil library (if present)
to parse an ISO 8601 datetime string in value. If it cannot,
or the dateutil library is not present, it will raise a
ValueError.

	
decode_non_decimal(value: str) → int

	Extends parent function by allowing a plus or
minus sign to be in two different positions
in a non-decimal number, since PVL has one
specification, and ODL has another.

	
decode_unquoted_string(value: str) → str

	Overrides parent function since the ODLDecoder has a more narrow
definition of what is allowable as an unquoted string than the
PVLDecoder does.

	
class pvl.decoder.PDSLabelDecoder(grammar=None, quantity_cls=None)

	Bases: pvl.decoder.ODLDecoder

A decoder based on the rules in the PDS3 Standards Reference
(version 3.8, 27 Feb 2009) Chapter 12: Object Description
Language Specification and Usage.

Extends ODLDecoder, and if grammar is not specified, it will
default to a PDS3Grammar() object.

	
decode_datetime(value: str)

	Overrides parent function since PDS3 forbids a timezone
specification, and times with a precision more than miliseconds.

If it cannot decode properly, it will raise a ValueError.

	
class pvl.decoder.PVLDecoder(grammar=None, quantity_cls=None, real_cls=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A decoder based on the rules in the CCSDS-641.0-B-2 ‘Blue Book’
which defines the PVL language.

	Parameters

	
	grammar – defaults to a pvl.grammar.PVLGrammar, but can
be any object that implements the pvl.grammar interface.

	quantity_cls – defaults to pvl.collections.Quantity, but
could be any class object that takes two arguments, where the
first is the value, and the second is the units value.

	real_cls – defaults to float [https://docs.python.org/3/library/functions.html#float], but could be any class object
that can be constructed from a str object.

	
decode(value: str)

	Returns a Python object based on value.

	
decode_datetime(value: str)

	Takes a string and attempts to convert it to the appropriate
Python datetime time, date, or datetime
type based on this decoder’s grammar, or in one case, a str.

The PVL standard allows for the seconds value to range
from zero to 60, so that the 60 can accommodate leap
seconds. However, the Python datetime classes don’t
support second values for more than 59 seconds.

If a time with 60 seconds is encountered, it will not be
returned as a datetime object (since that is not representable
via Python datetime objects), but simply as a string.

The user can then then try and use the time module
to parse this string into a time.struct_time. We
chose not to do this with pvl because time.struct_time
is a full datetime like object, even if it parsed
only a time like object, the year, month, and day
values in the time.struct_time would default, which
could be misleading.

Alternately, the pvl.grammar.PVLGrammar class contains
two regexes: leap_second_Ymd_re and leap_second_Yj_re
which could be used along with the re.match object’s
groupdict() function to extract the string representations
of the various numerical values, cast them to the appropriate
numerical types, and do something useful with them.

	
decode_decimal(value: str)

	Returns a Python int or self.real_cls object, as appropriate
based on value. Raises a ValueError otherwise.

	
decode_non_decimal(value: str) → int

	Returns a Python int as decoded from value
on the assumption that value conforms to a
non-decimal integer value as defined by this decoder’s
grammar, raises ValueError otherwise.

	
decode_quantity(value, unit)

	Returns a Python object that represents a value with
an associated unit, based on the values provided via
value and unit. This function creates an object
based on the decoder’s quantity_cls.

	
decode_quoted_string(value: str) → str

	Returns a Python str if value begins and ends
with matching quote characters based on this decoder’s
grammar. Raises ValueError otherwise.

	
decode_simple_value(value: str)

	Returns a Python object based on value, assuming
that value can be decoded as a PVL Simple Value:

<Simple-Value> ::= (<Date-Time> | <Numeric> | <String>)

	
decode_unquoted_string(value: str) → str

	Returns a Python str if value can be decoded
as an unquoted string, based on this decoder’s grammar.
Raises a ValueError otherwise.

	
is_leap_seconds(value: str) → bool

	Returns True if value is a time that matches the
grammar’s definition of a leap seconds time (a time string with
a value of 60 for the seconds value). False otherwise.

	
pvl.decoder.for_try_except(exception, function, *iterable)

	Return the result of the first successful application of function
to an element of iterable. If the function raises an Exception
of type exception, it will continue to the next item of iterable.
If there are no successful applications an Exception of type
exception will be raised.

If additional iterable arguments are passed, function must
take that many arguments and is applied to the items from
all iterables in parallel (like map()). With multiple iterables,
the iterator stops when the shortest iterable is exhausted.

pvl.encoder module

Parameter Value Langage encoder.

An encoder deals with converting Python objects into
string values that conform to a PVL specification.

	
class pvl.encoder.ISISEncoder(grammar=None, decoder=None, indent=2, width=80, aggregation_end=True, end_delimiter=False, newline='n', group_class=<class 'pvl.collections.PVLGroup'>, object_class=<class 'pvl.collections.PVLObject'>)

	Bases: pvl.encoder.PVLEncoder

An encoder for writing PVL text that can be parsed by the
ISIS PVL text parser.

The ISIS3 implementation (as of 3.9) of PVL/ODL (like) does not
strictly follow any of the published standards. It was based
on PDS3 ODL from the 1990s, but has several extensions adopted
from existing and prior data sets from ISIS2, PDS, JAXA, ISRO,
…, and extensions used only within ISIS files (cub, net). This
is one of the reasons using ISIS cube files or PVL text written by
ISIS as an archive format has been strongly discouraged.

Since there is no specification, only a detailed analysis of
the ISIS software that parses and writes its PVL text would
yield a strategy for parsing it. This encoder is most likely the
least reliable for that reason. We welcome bug reports to help
extend our coverage of this flavor of PVL text.

	Parameters

	
	grammar – defaults to pvl.grammar.ISISGrammar().

	decoder – defaults to pvl.decoder.PVLDecoder().

	end_delimiter – defaults to False.

	newline – defaults to ‘\n’.

	
class pvl.encoder.ODLEncoder(grammar=None, decoder=None, indent=2, width=80, aggregation_end=True, end_delimiter=False, newline='rn', group_class=<class 'pvl.collections.PVLGroup'>, object_class=<class 'pvl.collections.PVLObject'>)

	Bases: pvl.encoder.PVLEncoder

An encoder based on the rules in the PDS3 Standards Reference
(version 3.8, 27 Feb 2009) Chapter 12: Object Description
Language Specification and Usage for ODL only. This is
almost certainly not what you want. There are very rarely
cases where you’d want to use ODL that you wouldn’t also want
to use the PDS Label restrictions, so you probably really want
the PDSLabelEncoder class, not this one. Move along.

It extends PVLEncoder.

	Parameters

	
	grammar – defaults to pvl.grammar.ODLGrammar().

	decoder – defaults to pvl.decoder.ODLDecoder().

	end_delimiter – defaults to False.

	newline – defaults to ‘\r\n’.

	
encode(module: collections.abc.Mapping) → str

	Extends parent function, but ODL requires that there must be
a spacing or format character after the END statement and this
adds the encoder’s newline sequence.

	
encode_assignment(key, value, level=0, key_len=None) → str

	Overrides parent function by restricting the length of
keywords and enforcing that they be ODL Identifiers
and uppercasing their characters.

	
encode_sequence(value) → str

	Extends parent function, as ODL only allows one- and
two-dimensional sequences of ODL scalar_values.

	
encode_set(values) → str

	Extends parent function, ODL only allows sets to contain
scalar values.

	
encode_string(value)

	Extends parent function by appropriately quoting Symbol
Strings.

	
encode_time(value: datetime.time) → str

	Extends parent function since ODL allows a time zone offset
from UTC to be included, and otherwise recommends that times
be suffixed with a ‘Z’ to clearly indicate that they are in UTC.

	
encode_units(value) → str

	Overrides parent function since ODL limits what characters
and operators can be present in Units Expressions.

	
encode_value(value)

	Extends parent function by only allowing Units Expressions for
numeric values.

	
is_assignment_statement(s) → bool

	Returns true if s is an ODL Assignment Statement, false otherwise.

An ODL Assignment Statement is either an
element_identifier or a namespace_identifier
joined to an element_identifier with a colon.

	
is_scalar(value) → bool

	Returns a boolean indicating whether the value object
qualifies as an ODL ‘scalar_value’.

ODL defines a ‘scalar-value’ as a numeric_value, a
date_time_string, a text_string_value, or a symbol_value.

For Python, these correspond to the following:

	numeric_value: any of self.numeric_types, and Quantity whose value
is one of the self.numeric_types.

	date_time_string: datetime objects

	text_string_value: str

	symbol_value: str

	
is_symbol(value) → bool

	Returns true if value is an ODL Symbol String, false otherwise.

An ODL Symbol String is enclosed by single quotes
and may not contain any of the following characters:

	The apostrophe, which is reserved as the symbol string delimiter.

	ODL Format Effectors

	Control characters

This means that an ODL Symbol String is a subset of the PVL
quoted string, and will be represented in Python as a str.

	
needs_quotes(s: str) → bool

	Return true if s is an ODL Identifier, false otherwise.

Overrides parent function.

	
class pvl.encoder.PDSLabelEncoder(grammar=None, decoder=None, indent=2, width=80, aggregation_end=True, group_class=<class 'pvl.collections.PVLGroup'>, object_class=<class 'pvl.collections.PVLObject'>, convert_group_to_object=True, tab_replace=4, symbol_single_quote=True, time_trailing_z=True)

	Bases: pvl.encoder.ODLEncoder

An encoder based on the rules in the PDS3 Standards Reference
(version 3.8, 27 Feb 2009) Chapter 12: Object Description
Language Specification and Usage and writes out labels that
conform to the PDS 3 standards.

It extends ODLEncoder.

You are not allowed to chose end_delimiter or newline
as the parent class allows, because to be PDS-compliant,
those are fixed choices. However, in some cases, the PDS3
Standards are asymmetric, allowing for a wider variety of
PVL-text on “read” and a more narrow variety of PVL-text
on “write”. The default values of the PDSLabelEncoder enforce
those strict “write” rules, but if you wish to alter them,
but still produce PVL-text that would validate against the PDS3
standard, you may alter them.

	Parameters

	
	convert_group_to_object – Defaults to True, meaning that
if a GROUP does not conform to the PDS definition of a
GROUP, then it will be written out as an OBJECT. If it is
False, then an exception will be thrown if incompatible
GROUPs are encountered. In PVL and ODL, the OBJECT and GROUP
aggregations are interchangeable, but the PDS applies
restrictions to what can appear in a GROUP.

	tab_replace – Defaults to 4 and indicates the number of
space characters to replace horizontal tab characters with
(since tabs aren’t allowed in PDS labels). If this is set
to zero, tabs will not be replaced with spaces.

	symbol_single_quotes – Defaults to True, and if a Python str
object qualifies as a PVL Symbol String, it will be written to
PVL-text as a single-quoted string. If False, no special
handling is done, and any PVL Symbol String will be treated
as a PVL Text String, which is typically enclosed with double-quotes.

	time_trailing_z – defaults to True, and suffixes a “Z” to
datetimes and times written to PVL-text as the PDS encoding
standard requires. If False, no trailing “Z” is written.

	
count_aggs(module: collections.abc.Mapping, obj_count: int = 0, grp_count: int = 0) -> (<class 'int'>, <class 'int'>)

	Returns the count of OBJECT and GROUP aggregations
that are contained within the module as a two-tuple
in that order.

	
encode(module: collections.abc.MutableMapping) → str

	Extends the parent function, by adding a restriction.
For PDS, if there are any GROUP elements, there must be at
least one OBJECT element in the label. Behavior here
depends on the value of this encoder’s convert_group_to_object
property.

	
encode_aggregation_block(key, value, level=0)

	Extends parent function because PDS has restrictions on
what may be in a GROUP.

If the encoder’s convert_group_to_object parameter is True,
and a GROUP does not conform to the PDS definition of a GROUP,
then it will be written out as an OBJECT. If it is False,
then an exception will be thrown.

	
encode_set(values) → str

	Extends parent function because PDS only allows symbol values
and integers within sets.

	
encode_string(value)

	Extends parent function to treat Symbol Strings as Text Strings,
which typically means that they are double-quoted and not
single-quoted.

	
encode_time(value: datetime.time) → str

	Overrides parent’s encode_time() function because
even though ODL allows for timezones, PDS does not.

Not in the section on times, but at the end of the PDS
ODL document, in section 12.7.3, para 14, it indicates that
alternate time zones may not be used in a PDS label, only
these:
1. YYYY-MM-DDTHH:MM:SS.SSS.
2. YYYY-DDDTHH:MM:SS.SSS.

	
is_PDSgroup(group: collections.abc.Mapping) → bool

	Returns true if the dict-like group qualifies as a PDS Group,
false otherwise.

PDS applies the following restrictions to GROUPS:

	The GROUP structure may only be used in a data product
label which also contains one or more data OBJECT definitions.

	The GROUP statement must contain only attribute assignment
statements, include pointers, or related information pointers
(i.e., no data location pointers). If there are multiple
values, a single statement must be used with either sequence
or set syntax; no attribute assignment statement or pointer
may be repeated.

	GROUP statements may not be nested.

	GROUP statements may not contain OBJECT definitions.

	Only PSDD elements may appear within a GROUP statement.
PSDD is not defined anywhere in the PDS document, so don’t
know how to test for it.

	The keyword contents associated with a specific GROUP
identifier must be identical across all labels of a single data
set (with the exception of the “PARAMETERS” GROUP, as
explained).

Use of the GROUP structure must be coordinated with the
responsible PDS discipline Node.

Items 1 & 6 and the final sentence above, can’t really be tested
by examining a single group, but must be dealt with in a larger
context. The ODLEncoder.encode_module() handles #1, at least.
You’re on your own for the other two issues.

Item 5: PSDD is not defined anywhere in the ODL PDS document,
so don’t know how to test for it.

	
class pvl.encoder.PVLEncoder(grammar=None, decoder=None, indent: int = 2, width: int = 80, aggregation_end: bool = True, end_delimiter: bool = True, newline: str = 'n', group_class=<class 'pvl.collections.PVLGroup'>, object_class=<class 'pvl.collections.PVLObject'>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An encoder based on the rules in the CCSDS-641.0-B-2 ‘Blue Book’
which defines the PVL language.

	Parameters

	
	grammar – A pvl.grammar object, if None or not specified, it will
be set to the grammar parameter of decoder (if
decoder is not None) or will default to PVLGrammar().

	grammar – defaults to pvl.grammar.PVLGrammar().

	decoder – defaults to pvl.decoder.PVLDecoder().

	indent – specifies the number of spaces that will be used to
indent each level of the PVL document, when Groups or Objects
are encountered, defaults to 2.

	width – specifies the number of characters in width that each
line should have, defaults to 80.

	aggregation_end – when True the encoder will print the value
of the aggregation’s Block Name in the End Aggregation Statement
(e.g. END_GROUP = foo), and when false, it won’t (e.g. END_GROUP).
Defaults to True.

	end_delimiter – when True the encoder will print the grammar’s
delimiter (e.g. ‘;’ for PVL) after each statement, when False
it won’t. Defaults to True.

	newline – is the string that will be placed at the end of each
‘line’ of output (and counts against width), defaults to ‘\n’.

	group_class – must this class will be tested against with
isinstance() to determine if various elements of the dict-like
passed to encode() should be encoded as a PVL Group or PVL Object,
defaults to PVLGroup.

	object_class – must be a class that can take a group_class
object in its constructor (essentially converting a group_class
to an object_class), otherwise will raise TypeError. Defaults
to PVLObject.

	
add_quantity_cls(cls, value_prop: str, units_prop: str)

	Adds a quantity class to the list of possible
quantities that this encoder can handle.

	Parameters

	
	cls – The name of a quantity class that can be tested
with isinstance().

	value_prop – A string that is the property name of
cls that contains the value or magnitude of the quantity
object.

	units_prop – A string that is the property name of
cls that contains the units element of the quantity
object.

	
encode(module: collections.abc.Mapping) → str

	Returns a str formatted as a PVL document based
on the dict-like module object
according to the rules of this encoder.

	
encode_aggregation_block(key: str, value: collections.abc.Mapping, level: int = 0) → str

	Returns a str formatted as a PVL Aggregation Block with
key as its name, and its contents based on the
dict-like value object according to the
rules of this encoder, with an indentation level
of level.

	
encode_assignment(key: str, value, level: int = 0, key_len: int = None) → str

	Returns a str formatted as a PVL Assignment Statement
with key as its Parameter Name, and its value based
on value object according to the rules of this encoder,
with an indentation level of level. It also allows for
an optional key_len which indicates the width in characters
that the Assignment Statement should be set to, defaults to
the width of key.

	
static encode_date(value: datetime.date) → str

	Returns a str formatted as a PVL Date based
on the value object according to the rules of this encoder.

	
encode_datetime(value: datetime.datetime) → str

	Returns a str formatted as a PVL Date/Time based
on the value object according to the rules of this encoder.

	
encode_datetype(value) → str

	Returns a str formatted as a PVL Date/Time based
on the value object according to the rules of this encoder.
If value is not a datetime date, time, or datetime object,
it will raise TypeError.

	
encode_module(module: collections.abc.Mapping, level: int = 0) → str

	Returns a str formatted as a PVL module based
on the dict-like module object according to the
rules of this encoder, with an indentation level
of level.

	
encode_quantity(value) → str

	Returns a str formatted as a PVL Value followed by
a PVL Units Expression if the value object can be
encoded this way, otherwise raise ValueError.

	
encode_sequence(value: collections.abc.Sequence) → str

	Returns a str formatted as a PVL Sequence based
on the value object according to the rules of this encoder.

	
encode_set(value: collections.abc.Set) → str

	Returns a str formatted as a PVL Set based
on the value object according to the rules of this encoder.

	
encode_setseq(values: collections.abc.Collection) → str

	This function provides shared functionality for
encode_sequence() and encode_set().

	
encode_simple_value(value) → str

	Returns a str formatted as a PVL Simple Value based
on the value object according to the rules of this encoder.

	
encode_string(value) → str

	Returns a str formatted as a PVL String based
on the value object according to the rules of this encoder.

	
static encode_time(value: datetime.time) → str

	Returns a str formatted as a PVL Time based
on the value object according to the rules of this encoder.

	
encode_units(value: str) → str

	Returns a str formatted as a PVL Units Value based
on the value object according to the rules of this encoder.

	
encode_value(value) → str

	Returns a str formatted as a PVL Value based
on the value object according to the rules of this encoder.

	
encode_value_units(value, units) → str

	Returns a str formatted as a PVL Value from value
followed by a PVL Units Expressions from units.

	
format(s: str, level: int = 0) → str

	Returns a string derived from s, which
has leading space characters equal to
level times the number of spaces specified
by this encoder’s indent property.

It uses the textwrap library to wrap long lines.

	
needs_quotes(s: str) → bool

	Returns true if s must be quoted according to this
encoder’s grammar, false otherwise.

	
class pvl.encoder.QuantTup

	Bases: pvl.encoder.QuantTup

This class is just a convenient namedtuple for internally keeping track
of quantity classes that encoders can deal with. In general, users
should not be instantiating this, instead use your encoder’s
add_quantity_cls() function.

pvl.exceptions module

Exceptions for the Parameter Value Library.

	
exception pvl.exceptions.LexerError(msg, doc, pos, lexeme)

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Subclass of ValueError with the following additional properties:

msg: The unformatted error message
doc: The PVL text being parsed
pos: The start index in doc where parsing failed
lineno: The line corresponding to pos
colno: The column corresponding to pos

	
exception pvl.exceptions.ParseError(msg, token=None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An exception to signal errors in the pvl parser.

	
exception pvl.exceptions.QuantityError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

A simple exception to distinguish errors from Quantity classes.

	
pvl.exceptions.firstpos(sub: str, pos: int)

	On the assumption that sub is a substring contained in a longer
string, and pos is the index in that longer string of the final
character in sub, returns the position of the first character of
sub in that longer string.

This is useful in the PVL library when we know the position of the
final character of a token, but want the position of the first
character.

	
pvl.exceptions.linecount(doc: str, end: int, start: int = 0)

	Returns the number of lines (by counting the
number of newline characters n, with the first line
being line number one) in the string doc between the
positions start and end.

pvl.grammar module

Describes the language aspects of PVL dialects.

These grammar objects are not particularly meant to be easily
user-modifiable during running of an external program, which is why
they have no arguments at initiation time, nor are there any methods
or functions to modify them. This is because these grammar objects
are used both for reading and writing PVL-text. As such, objects
like PVLGrammar and ODLGrammar shouldn’t be altered, because if
they are, then the PVL-text written out with them wouldn’t conform
to the spec.

Certainly, these objects do have attributes that can be altered,
but unless you’ve carefully read the code, it isn’t recommended.

Maybe someday we’ll add a more user-friendly interface to allow that,
but in the meantime, just leave an Issue on the GitHub repo.

	
class pvl.grammar.ISISGrammar

	Bases: pvl.grammar.PVLGrammar

This defines the ISIS version of PVL.

This is valid as of ISIS 3.9, and before, at least.

The ISIS ‘Pvl’ object typically writes out parameter
values and keywords in CamelCase (e.g. ‘Group’, ‘End_Group’,
‘CenterLatitude’, etc.), but it will accept all-uppercase
versions.

Technically, since the ISIS ‘Pvl’ object which parses
PVL text into C++ objects for ISIS programs to work with
does not recognize the ‘BEGIN_<GROUP|OBJECT>’ construction,
this means that ISIS does not parse PVL text that would be
valid according to the PVL, ODL, or PDS3 specs.

	
static adjust_reserved_characters(chars: collections.abc.Iterable)

	

	
comments = (('/*', '*/'), ('#', '\n'))

	

	
group_keywords = {'GROUP': 'END_GROUP'}

	

	
group_pref_keywords = ('Group', 'End_Group')

	

	
object_keywords = {'OBJECT': 'END_OBJECT'}

	

	
object_pref_keywords = ('Object', 'End_Object')

	

	
class pvl.grammar.ODLGrammar

	Bases: pvl.grammar.PVLGrammar

This defines an ODL grammar.

The reference for this grammar is the PDS3 Standards Reference
(version 3.8, 27 Feb 2009) Chapter 12: Object Description
Language Specification and Usage.

	
char_allowed(char)

	Returns true if char is allowed in the ODL Character Set.

The ODL Character Set is limited to ASCII. This is fewer
characters than PVL, but appears to allow more control
characters to be in quoted strings than PVL does.

	
default_timezone = None

	

	
group_pref_keywords = ('GROUP', 'END_GROUP')

	

	
leap_second_Yj_re = None

	

	
leap_second_Ymd_re = None

	

	
nondecimal_pre_re = re.compile('(?P<radix>[2-9]|1[0-6])#(?P<sign>[+-]?)')

	

	
nondecimal_re = re.compile('(?P<radix>[2-9]|1[0-6])#(?P<sign>[+-]?)(?P<non_decimal>[0-9A-Fa-f]+)#')

	

	
object_pref_keywords = ('OBJECT', 'END_OBJECT')

	

	
class pvl.grammar.OmniGrammar

	Bases: pvl.grammar.PVLGrammar

A broadly permissive grammar.

This grammar does not follow a specification, but is meant to allow
the broadest possible ingestion of PVL-like text that is found.

This grammar should not be used to write out Python objects to PVL,
instead please use one of the grammars that follows a published
specification, like the PVLGrammar or the ODLGrammar.

	
char_allowed(char)

	Takes all characters, could accept bad things, and the user must
beware.

	
comments = (('/*', '*/'), ('#', '\n'))

	

	
nondecimal_pre_re = re.compile('(?P<sign>[+-]?)(?P<radix>[2-9]|1[0-6])#(?P<second_sign>[+-]?)')

	

	
nondecimal_re = re.compile('(?P<sign>[+-]?)(?P<radix>[2-9]|1[0-6])#(?P<second_sign>[+-]?)(?P<non_decimal>[0-9A-Fa-f]+)#')

	

	
class pvl.grammar.PDSGrammar

	Bases: pvl.grammar.ODLGrammar

This defines a PDS3 ODL grammar.

The reference for this grammar is the PDS3 Standards Reference
(version 3.8, 27 Feb 2009) Chapter 12: Object Description
Language Specification and Usage.

	
default_timezone = datetime.timezone.utc

	

	
class pvl.grammar.PVLGrammar

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Describes a PVL grammar for use by the lexer and parser.

The reference for this grammar is the CCSDS-641.0-B-2 ‘Blue Book’.

	
aggregation_keywords = {'BEGIN_GROUP': 'END_GROUP', 'BEGIN_OBJECT': 'END_OBJECT', 'GROUP': 'END_GROUP', 'OBJECT': 'END_OBJECT'}

	

	
binary_re = re.compile('(?P<sign>[+-]?)(?P<radix>2)#(?P<non_decimal>[01]+)#')

	

	
char_allowed(char)

	Returns true if char is allowed in the PVL Character Set.

This is defined as most of the ISO 8859-1 ‘latin-1’ character
set with some exclusions.

	
comments = (('/*', '*/'),)

	

	
d = '%Y-%j'

	

	
date_formats = ('%Y-%m-%d', '%Y-%j', '%Y-%m-%dZ', '%Y-%jZ')

	

	
datetime_formats = ['%Y-%m-%dT%H:%M', '%Y-%m-%dT%H:%MZ', '%Y-%m-%dT%H:%M:%S', '%Y-%m-%dT%H:%M:%SZ', '%Y-%m-%dT%H:%M:%S.%f', '%Y-%m-%dT%H:%M:%S.%fZ', '%Y-%jT%H:%M', '%Y-%jT%H:%MZ', '%Y-%jT%H:%M:%S', '%Y-%jT%H:%M:%SZ', '%Y-%jT%H:%M:%S.%f', '%Y-%jT%H:%M:%S.%fZ']

	

	
default_timezone = datetime.timezone.utc

	

	
delimiters = (';',)

	

	
end_statements = ('END',)

	

	
false_keyword = 'FALSE'

	

	
format_effectors = ('\n', '\r', '\x0b', '\x0c')

	

	
group_keywords = {'BEGIN_GROUP': 'END_GROUP', 'GROUP': 'END_GROUP'}

	

	
group_pref_keywords = ('BEGIN_GROUP', 'END_GROUP')

	

	
hex_re = re.compile('(?P<sign>[+-]?)(?P<radix>16)#(?P<non_decimal>[0-9A-Fa-f]+)#')

	

	
leap_second_Yj_re = re.compile('((?P<year>\\d{3}[1-9])-(?P<doy>(00[1-9]|0[1-9]\\d)|[12]\\d{2}|3[0-5]\\d|36[0-6])T)?(?P<hour>0\\d|1\\d|2[0-3]):(?P<minute>[0-5]\\d):60(\\.(?P<microsecond>\\d+))?Z?')

	

	
leap_second_Ymd_re = re.compile('((?P<year>\\d{3}[1-9])-(?P<month>0[1-9]|1[0-2])-(?P<day>0[1-9]|[12]\\d|3[01])T)?(?P<hour>0\\d|1\\d|2[0-3]):(?P<minute>[0-5]\\d):60(\\.(?P<microsecond>\\d+))?Z?')

	

	
nondecimal_pre_re = re.compile('(?P<sign>[+-]?)(?P<radix>2|8|16)#')

	

	
nondecimal_re = re.compile('(?P<sign>[+-]?)(?P<radix>2|8|16)#(?P<non_decimal>[0-9|A-Fa-f]+)#')

	

	
none_keyword = 'NULL'

	

	
numeric_start_chars = ('+', '-')

	

	
object_keywords = {'BEGIN_OBJECT': 'END_OBJECT', 'OBJECT': 'END_OBJECT'}

	

	
object_pref_keywords = ('BEGIN_OBJECT', 'END_OBJECT')

	

	
octal_re = re.compile('(?P<sign>[+-]?)(?P<radix>8)#(?P<non_decimal>[0-7]+)#')

	

	
p = ('BEGIN_OBJECT', 'END_OBJECT')

	

	
quotes = ('"', "'")

	

	
reserved_characters = ('&', '<', '>', "'", '{', '}', ',', '[', ']', '=', '!', '#', '(', ')', '%', '+', '"', ';', '~', '|')

	

	
reserved_keywords = {'BEGIN_GROUP', 'BEGIN_OBJECT', 'END', 'END_GROUP', 'END_OBJECT', 'GROUP', 'OBJECT'}

	

	
sequence_delimiters = ('(', ')')

	

	
set_delimiters = ('{', '}')

	

	
spacing_characters = (' ', '\t')

	

	
t = '%H:%M:%S.%f'

	

	
time_formats = ('%H:%M', '%H:%M:%S', '%H:%M:%S.%f', '%H:%MZ', '%H:%M:%SZ', '%H:%M:%S.%fZ')

	

	
true_keyword = 'TRUE'

	

	
units_delimiters = ('<', '>')

	

	
whitespace = (' ', '\t', '\n', '\r', '\x0b', '\x0c')

	

pvl.lexer module

Provides lexer functions for PVL.

	
class pvl.lexer.Preserve

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
COMMENT = 2

	

	
FALSE = 1

	

	
NONDECIMAL = 5

	

	
QUOTE = 4

	

	
UNIT = 3

	

	
pvl.lexer.lex_char(char: str, prev_char: str, next_char: str, lexeme: str, preserve: dict, g: pvl.grammar.PVLGrammar, c_info: dict) -> (<class 'str'>, <class 'dict'>)

	Returns a modified lexeme string and a modified preserve
dict in a two-tuple.

This is the main lexer() helper function for determining how
to modify (or not) lexeme and preserve based on the
single character in char and the other values passed into
this function.

	
pvl.lexer.lex_comment(char: str, prev_char: str, next_char: str, lexeme: str, preserve: dict, c_info: dict) -> (<class 'str'>, <class 'dict'>)

	Returns a modified lexeme string and a modified preserve
dict in a two-tuple.

This is a lexer() helper function for determining how to
modify lexeme and preserve based on the single character
in char which may or may not be a comment character.

This function just makes the decision about whether to call
lex_multichar_comments() or lex_singlechar_comments(), and
then returns what they return.

	
pvl.lexer.lex_continue(char: str, next_char: str, lexeme: str, token: pvl.token.Token, preserve: dict, g: pvl.grammar.PVLGrammar) → bool

	Return True if accumulation of lexeme should continue based
on the values passed into this function, false otherwise.

This is a lexer() helper function.

	
pvl.lexer.lex_multichar_comments(char: str, prev_char: str, next_char: str, lexeme: str, preserve: dict, comments: (<class 'str'>, <class 'str'>) = (('/*', '*/'),)) -> (<class 'str'>, <class 'dict'>)

	Returns a modified lexeme string and a modified preserve
dict in a two-tuple.

This is a lexer() helper function for determining how to
modify lexeme and preserve based on the single character
in char which may or may not be part of a multi-character
comment character group.

This function has an internal list of allowed pairs of
multi-character comments that it can deal with, if the
comments tuple contains any two-tuples that cannot be
handled, a NotImplementedError will be raised.

This function will determine whether to append char to
lexeme or not, and will set the value of the ‘state’ and
‘end’ values of preserve appropriately.

	
pvl.lexer.lex_preserve(char: str, lexeme: str, preserve: dict) -> (<class 'str'>, <class 'dict'>)

	Returns a modified lexeme string and a modified preserve
dict in a two-tuple. The modified lexeme will always be
the concatenation of lexeme and char.

This is a lexer() helper function that is responsible for
changing the state of the preserve dict, if needed.

If the value for ‘end’ in preserve is the same as char,
then the modified preserve will have its ‘state’ value
set to Preserve.FALSE and its ‘end’ value set to None,
otherwise second item in the returned tuple will be preserve
unchanged.

	
pvl.lexer.lex_singlechar_comments(char: str, lexeme: str, preserve: dict, comments: dict) -> (<class 'str'>, <class 'dict'>)

	Returns a modified lexeme string and a modified preserve
dict in a two-tuple.

This is a lexer() helper function for determining how to modify
lexeme and preserve based on the single character in char
which may or may not be a comment character.

If the preserve ‘state’ value is Preserve.COMMENT then
the value of lex_preserve() is returned.

If char is among the keys of the comments dict, then the
returned lexeme will be the concatenation of lexeme and
char. returned preserve dict will have its ‘state’ value
set to Preserve.COMMENT and its ‘end’ value set to the value
of comments[char].

Otherwise return lexeme and preserve unchanged in the
two-tuple.

	
pvl.lexer.lexer(s: str, g=<pvl.grammar.PVLGrammar object>, d=<pvl.decoder.PVLDecoder object>)

	This is a generator function that returns pvl.Token objects
based on the passed in string, s, when the generator’s
next() is called.

A call to send(t) will ‘return’ the value t to the
generator, which will be yielded upon calling next().
This allows a user to ‘peek’ at the next token, but return it
if they don’t like what they see.

g is expected to be an instance of pvl.grammar, and d an
instance of pvl.decoder. The lexer will perform differently,
given different values of g and d.

pvl.new module

pvl.parser module

Parameter Value Language parser.

The definition of PVL used in this module is based on the Consultive
Committee for Space Data Systems, and their Parameter Value
Language Specification (CCSD0006 and CCSD0008), CCSDS 6441.0-B-2,
referred to as the Blue Book with a date of June 2000.

Some of the documention in this module represents the structure
diagrams from the Blue Book for parsing PVL in a Backus–Naur
form.

So Figure 1-1 from the Blue Book would be represented as :

<Item-A> ::= ([<Item-B>+ | <Item-C>] <Item-D>)*

Finally, the Blue Book defines <WSC> as a possibly empty collection
of white space characters or comments:

<WSC> ::= (<white-space-character> | <comment>)*

However, to help remember that <WSC> could be empty, we will typically
always show it as <WSC>*.

Likewise the <Statement-Delimiter> is defined as:

<Statement-Delimiter> ::= <WSC>* [‘;’ | <EOF>]

However, since all elements are optional, we will typically
show it as [<Statement-Delimiter>].

The parser deals with managing the tokens that come out of the lexer.
Once the parser gets to a state where it has something that needs to
be converted to a Python object and returned, it uses the decoder to
make that conversion.

Throughout this module, various parser functions will take a tokens:
collections.abc.Generator parameter. In all cases, tokens is
expected to be a generator iterator which provides pvl.token.Token
objects. It should allow for a generated object to be ‘returned’
via the generator’s send() function. When parsing the first object
from tokens, if an unexpected object is encountered, it will
‘return’ the object to tokens, and raise a ValueError, so
that try-except blocks can be used, and the generator
iterator is left in a good state. However, if a parsing anomaly
is discovered deeper in parsing a PVL sequence, then a ValueError
will be thrown into the tokens generator iterator (via .throw()).

	
class pvl.parser.EmptyValueAtLine

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str]

Empty string to be used as a placeholder for a parameter without
a value.

When a label contains a parameter without a value, it is normally
considered a broken label in PVL. To allow parsing to continue,
we can rectify the broken parameter-value pair by setting the
value to have a value of EmptyValueAtLine, which is an empty
string (and can be treated as such) with some additional properties.

The argument lineno should be the line number of the error from
the original document, which will be available as a property.

	Examples::

	>>> from pvl.parser import EmptyValueAtLine
>>> EV1 = EmptyValueAtLine(1)
>>> EV1
EmptyValueAtLine(1 does not have a value. Treat as an empty string)
>>> EV1.lineno
1
>>> print(EV1)
<BLANKLINE>

>>> EV1 + 'foo'
'foo'
>>> # Can be turned into an integer and float as 0:
>>> int(EV1)
0
>>> float(EV1)
0.0

	
class pvl.parser.ODLParser(grammar=None, decoder=None, lexer_fn=None, module_class=<class 'pvl.collections.PVLModule'>, group_class=<class 'pvl.collections.PVLGroup'>, object_class=<class 'pvl.collections.PVLObject'>)

	Bases: pvl.parser.PVLParser

A parser based on the rules in the PDS3 Standards Reference
(version 3.8, 27 Feb 2009) Chapter 12: Object Description
Language Specification and Usage.

It extends PVLParser.

	
parse_set(tokens: collections.abc.Generator) → set

	Overrides the parent function to return
the decoded <Set> as a Python set.

The ODL specification only allows scalar_values in Sets,
since ODL Sets cannot contain other ODL Sets, an ODL Set
can be represented as a Python set (unlike PVL Sets,
which must be represented as a Python frozenset objects).

	
parse_units(value, tokens: collections.abc.Generator) → str

	Extends the parent function, since ODL only allows units
on numeric values, any others will result in a ValueError.

	
class pvl.parser.OmniParser(grammar=None, decoder=None, lexer_fn=None, module_class=<class 'pvl.collections.PVLModule'>, group_class=<class 'pvl.collections.PVLGroup'>, object_class=<class 'pvl.collections.PVLObject'>)

	Bases: pvl.parser.PVLParser

A permissive PVL/ODL/ISIS label parser that attempts to parse
all forms of “PVL” that are thrown at it.

	
parse(s: str)

	Extends the parent function.

If any line ends with a dash (-) followed by a carriage
return, form-feed, or newline, plus one or more whitespace
characters on the following line, then those characters, and
all whitespace characters that begin the next line will
be removed.

	
parse_assignment_statement(tokens: collections.abc.Generator) → tuple

	Extends the parent function to allow for more
permissive parsing. If an Assignment-Statement
is blank, then the value will be assigned an
EmptyValueAtLine object.

	
parse_module_post_hook(module: pvl.collections.MutableMappingSequence, tokens: collections.abc.Generator)

	Overrides the parent function to allow for more
permissive parsing. If an Assignment-Statement
is blank, then the value will be assigned an
EmptyValueAtLine object.

	
parse_value_post_hook(tokens: collections.abc.Generator)

	Overrides the parent function to allow for more
permissive parsing.

If the next token is a reserved word or delimiter,
then it is returned to the tokens and an
EmptyValueAtLine object is returned as the value.

	
class pvl.parser.PVLParser(grammar=None, decoder=None, lexer_fn=None, module_class=<class 'pvl.collections.PVLModule'>, group_class=<class 'pvl.collections.PVLGroup'>, object_class=<class 'pvl.collections.PVLObject'>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A parser based on the rules in the CCSDS-641.0-B-2 ‘Blue Book’
which defines the PVL language.

	Parameters

	
	grammar – A pvl.grammar object, if None or not specified, it will
be set to the grammar parameter of decoder (if
decoder is not None) or will default to
pvl.grammar.OmniGrammar().

	decoder – defaults to pvl.decoder.OmniDecoder().

	lexer_fn – must be a lexer function that takes a str,
a grammar, and a decoder, as pvl.lexer.lexer() does,
which is the default if none is given.

	module_class – must be a subclass of PVLModule, and is the type
of object that will be returned from this parser’s parse()
function.

	group_class – must be a subclass of PVLGroup, and is the type
that will be used to hold PVL elements when a PVL Group is
encountered during parsing, and must be able to be added to
via an .append() function which should take a two-tuple
of name and value.

	object_class – must be a subclass of PVLObject, and is the type
that will be used to hold PVL elements when a PVL Object is
encountered during parsing, otherwise similar to group_class.

	
aggregation_cls(begin: str)

	Returns an initiated object of the group_class or object_class
as specified on this parser’s creation, according to the value
of begin. If begin does not match the Group or Object
keywords for this parser’s grammar, then it will raise a
ValueError.

	
parse(s: str)

	Converts the string, s to a PVLModule.

	
static parse_WSC_until(token: str, tokens: collections.abc.Generator) → bool

	Consumes objects from tokens, if the object’s .is_WSC()
function returns True, it will continue until token is
encountered and will return True. If it encounters an object
that does not meet these conditions, it will ‘return’ that
object to tokens and will return False.

tokens is expected to be a generator iterator which
provides pvl.token objects.

	
parse_aggregation_block(tokens: collections.abc.Generator)

	Parses the tokens for an Aggregation Block, and returns
the modcls object that is the result of the parsing and
decoding.

	<Aggregation-Block> ::= <Begin-Aggegation-Statement>

	(<WSC>* (Assignment-Statement | Aggregation-Block) <WSC>*)+
<End-Aggregation-Statement>

The Begin-Aggregation-Statement Name must match the Block-Name
in the paired End-Aggregation-Statement if a Block-Name is
present in the End-Aggregation-Statement.

	
parse_around_equals(tokens: collections.abc.Generator) → None

	Parses white space and comments on either side
of an equals sign.

tokens is expected to be a generator iterator which
provides pvl.token objects.

This is shared functionality for Begin Aggregation Statements
and Assignment Statements. It basically covers parsing
anything that has a syntax diagram like this:

<WSC>* ‘=’ <WSC>*

	
parse_assignment_statement(tokens: collections.abc.Generator) → tuple

	Parses the tokens for an Assignment Statement.

The returned two-tuple contains the Parameter Name in the
first element, and the Value in the second.

	<Assignment-Statement> ::= <Parameter-Name> <WSC>* ‘=’ <WSC>*

	<Value> [<Statement-Delimiter>]

	
parse_begin_aggregation_statement(tokens: collections.abc.Generator) → tuple

	Parses the tokens for a Begin Aggregation Statement, and returns
the name Block Name as a str.

	<Begin-Aggregation-Statement-block> ::=

	<Begin-Aggegation-Statement> <WSC>* ‘=’ <WSC>*
<Block-Name> [<Statement-Delimiter>]

Where <Block-Name> ::= <Parameter-Name>

	
parse_end_aggregation(begin_agg: str, block_name: str, tokens: collections.abc.Generator) → None

	Parses the tokens for an End Aggregation Statement.

	<End-Aggregation-Statement-block> ::=

	<End-Aggegation-Statement> [<WSC>* ‘=’ <WSC>*
<Block-Name>] [<Statement-Delimiter>]

Where <Block-Name> ::= <Parameter-Name>

	
parse_end_statement(tokens: collections.abc.Generator) → None

	Parses the tokens for an End Statement.

<End-Statement> ::= “END” (<WSC>* | [<Statement-Delimiter>])

	
parse_module(tokens: collections.abc.Generator)

	Parses the tokens for a PVL Module.

	<PVL-Module-Contents> ::=

	(<Assignment-Statement> | <WSC>* | <Aggregation-Block>)*
[<End-Statement>]

	
parse_module_post_hook(module: pvl.collections.MutableMappingSequence, tokens: collections.abc.Generator)

	This function is meant to be overridden by subclasses
that may want to perform some extra processing if
‘normal’ parse_module() operations fail to complete.
See OmniParser for an example.

This function shall return a two-tuple, with the first item
being the module (altered by processing or unaltered), and
the second item being a boolean that will signal whether
the tokens should continue to be parsed to accumulate more
elements into the returned module, or whether the
module is in a good state and should be returned by
parse_module().

If the operations within this function are unsuccessful,
it should raise an exception (any exception descended from
Exception), which will result in the operation of parse_module()
as if it were not overridden.

	
parse_sequence(tokens: collections.abc.Generator) → list

	Parses a PVL Sequence.

	<Set> ::= “(” <WSC>*

	[<Value> <WSC>* (“,” <WSC>* <Value> <WSC>*)*]
“)”

Returns the decoded <Sequence> as a Python list.

	
parse_set(tokens: collections.abc.Generator) → frozenset

	Parses a PVL Set.

	<Set> ::= “{” <WSC>*

	[<Value> <WSC>* (“,” <WSC>* <Value> <WSC>*)*]
“}”

Returns the decoded <Set> as a Python frozenset. The PVL
specification doesn’t seem to indicate that a PVL Set
has distinct values (like a Python set), only that the
ordering of the values is unimportant. For now, we will
implement PVL Sets as Python frozenset objects.

They are returned as frozenset objects because PVL Sets
can contain as their elements other PVL Sets, but since Python
set objects are non-hashable, they cannot be members of a set,
however, frozenset objects can.

	
static parse_statement_delimiter(tokens: collections.abc.Generator) → bool

	Parses the tokens for a Statement Delimiter.

tokens is expected to be a generator iterator which
provides pvl.token objects.

	<Statement-Delimiter> ::= <WSC>*

	(<white-space-character> | <comment> | ‘;’ | <EOF>)

Although the above structure comes from Figure 2-4
of the Blue Book, the <white-space-character> and <comment>
elements are redundant with the presence of [WSC]*
so it can be simplified to:

<Statement-Delimiter> ::= <WSC>* [‘;’ | <EOF>]

Typically written [<Statement-Delimiter>].

	
parse_units(value, tokens: collections.abc.Generator) → str

	Parses PVL Units Expression.

	<Units-Expression> ::= “<” [<white-space>] <Units-Value>

	[<white-space>] “>”

and

	<Units-Value> ::= <units-character>

	
	[[<units-character> | <white-space>]*

	<units-character>]

Returns the value and the <Units-Value> as a Units()
object.

	
parse_value(tokens: collections.abc.Generator)

	Parses PVL Values.

	<Value> ::= (<Simple-Value> | <Set> | <Sequence>)

	[<WSC>* <Units Expression>]

Returns the decoded <Value> as an appropriate Python object.

	
parse_value_post_hook(tokens)

	This function is meant to be overridden by subclasses
that may want to perform some extra processing if
‘normal’ parse_value() operations fail to yield a value.
See OmniParser for an example.

This function shall return an appropriate Python value,
similar to what parse_value() would return.

If the operations within this function are unsuccessful,
it should raise a ValueError which will result in the
operation of parse_value() as if it were not overridden.

pvl.pvl_translate module

A program for converting PVL text to a specific PVL dialect.

The pvl_translate program will read a file with PVL text (any
of the kinds of files that pvl.load() reads) or STDIN and
will convert that PVL text to a particular PVL dialect. It is not
particularly robust, and if it cannot make simple conversions, it
will raise errors.

	
class pvl.pvl_translate.JSONWriter

	Bases: pvl.pvl_translate.Writer

	
dump(dictlike: dict, outfile: os.PathLike)

	

	
class pvl.pvl_translate.PVLWriter(encoder)

	Bases: pvl.pvl_translate.Writer

	
dump(dictlike: dict, outfile: os.PathLike)

	

	
class pvl.pvl_translate.Writer

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for writers. Descendents must implement dump().

	
dump(dictlike: dict, outfile: os.PathLike)

	

	
pvl.pvl_translate.arg_parser(formats)

	

	
pvl.pvl_translate.main(argv=None)

	

pvl.pvl_validate module

A program for testing and validating PVL text.

The pvl_validate program will read a file with PVL text (any of
the kinds of files that pvl.load() reads) and will report
on which of the various PVL dialects were able to load that PVL
text, and then also reports on whether the pvl library can encode
the Python Objects back out to PVL text.

You can imagine some PVL text that could be loaded, but is not able
to be written out in a particular strict PVL dialect (like PDS3
labels).

	
pvl.pvl_validate.arg_parser()

	

	
pvl.pvl_validate.build_line(elements: list, widths: list, sep=' | ') → str

	Returns a string formatted from the elements and widths
provided.

	
pvl.pvl_validate.main(argv=None)

	

	
pvl.pvl_validate.pvl_flavor(text, dialect, decenc: dict, filename, verbose=False) -> (<class 'bool'>, <class 'bool'>)

	Returns a two-tuple of booleans which indicate
whether the text could be loaded and then encoded.

The first boolean in the two-tuple indicates whether the text
could be loaded with the given parser, grammar, and decoder.
The second indicates whether the loaded PVL object could be
encoded with the given encoder, grammar, and decoder. If the
first element is False, the second will be None.

	
pvl.pvl_validate.report(reports: list, flavors: list) → str

	Returns a multi-line string which is the
pretty-printed report given the list of
reports.

	
pvl.pvl_validate.report_many(r_list: list, flavors: list) → str

	Returns a multi-line, table-like string which
is the pretty-printed report of the items in r_list.

pvl.token module

	
class pvl.token.Token(content, grammar=None, decoder=None, pos=0)

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str]

A PVL-aware string.

	Variables

	
	content – A string that is the Token text.

	grammar – A pvl.grammar object, if None or not specified, it will
be set to the grammar parameter of decoder (if
decoder is not None) or will default to PVLGrammar().

	decoder – A pvl.decoder object, defaults to
PVLDecoder(grammar=*grammar*).

	pos – Integer that describes the starting position of this
Token in the source string, defaults to zero.

	
is_WSC() → bool

	Return true if the Token is white space characters or comments
according to the Token’s grammar, false otherwise.

	
is_begin_aggregation() → bool

	Return true if the Token is a begin aggregation
keyword (e.g. ‘BEGIN_GROUP’ in PVL) according to
the Token’s grammar, false otherwise.

	
is_comment() → bool

	Return true if the Token is a comment according to the
Token’s grammar (defined as beginning and ending with
comment delimieters), false otherwise.

	
is_datetime() → bool

	Return true if the Token’s decoder can convert the Token
to a datetime, false otherwise.

Separate is_date() or is_time() functions aren’t needed,
since PVL parsing doesn’t distinguish between them.
If a user needs that distinction the decoder’s
decode_datetime(self) function should return a datetime
time, date, or datetime object, as appropriate, and
a user can use isinstance() to check.

	
is_decimal() → bool

	Return true if the Token’s decoder can convert the Token
to a decimal value, false otherwise.

	
is_delimiter() → bool

	Return true if the Token is a delimiter character
(e.g. the ‘;’ in PVL) according to the Token’s grammar,
false otherwise.

	
is_end_statement() → bool

	Return true if the Token matches an end statement
from its grammar, false otherwise.

	
is_non_decimal() → bool

	Return true if the Token’s decoder can convert the Token
to a numeric non-decimal value, false otherwise.

	
is_numeric() → bool

	Return true if the Token’s is_decimal() or is_non_decimal()
functions return true, false otherwise.

	
is_parameter_name() → bool

	Return true if the Token is an unquoted string that
isn’t a reserved_keyword according to the Token’s
grammar, false otherwise.

	
is_quote() → bool

	Return true if the Token is a quote character
according to the Token’s grammar, false otherwise.

	
is_quoted_string() → bool

	Return true if the Token can be converted to a quoted
string by the Token’s decoder, false otherwise.

	
is_simple_value() → bool

	Return true if the Token’s decoder can convert the Token
to a ‘simple value’, however the decoder defines that, false
otherwise.

	
is_space() → bool

	Return true if the Token contains whitespace according
to the definition of whitespace in the Token’s grammar
and there is at least one character, false otherwise.

	
is_string() → bool

	Return true if either the Token’s is_quoted_string()
or is_unquoted_string() return true, false otherwise.

	
is_unquoted_string() → bool

	Return false if the Token has any
reserved characters, comment characters, whitespace
characters or could be interpreted as a number,
date, or time according to the Token’s grammar,
true otherwise.

	
isnumeric() → bool

	Overrides str.isnumeric() to be the same as Token’s
is_numeric() function, so that we don’t get inconsisent behavior
if someone forgets an underbar.

	
isspace() → bool

	Overrides str.isspace() to be the same as Token’s
is_space() function, so that we don’t get inconsisent
behavior if someone forgets an underbar.

	
lstrip(chars=None)

	Extends str.lstrip() to strip whitespace according
to the definition of whitespace in the Token’s grammar
instead of the default Python whitespace definition.

	
replace(*args)

	Extends str.replace() to return a Token.

	
rstrip(chars=None)

	Extends str.rstrip() to strip whitespace according
to the definition of whitespace in the Token’s grammar
instead of the default Python whitespace definition.

	
split(sep=None, maxsplit=-1) → list

	Extends str.split() that calling split() on a Token
returns a list of Tokens.

	
strip(chars=None)

	Extends str.strip() to strip whitespace according
to the definition of whitespace in the Token’s grammar
instead of the default Python whitespace definition.

Module contents

Python implementation of PVL (Parameter Value Language).

	
pvl.load(path, parser=None, grammar=None, decoder=None, encoding=None, **kwargs)

	Returns a Python object from parsing the file at path.

	Parameters

	
	path – an os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] which presumably has a
PVL Module in it to parse.

	parser – defaults to pvl.parser.OmniParser().

	grammar – defaults to pvl.grammar.OmniGrammar().

	decoder – defaults to pvl.decoder.OmniDecoder().

	encoding – defaults to None, and has the same meaning as
for open() [https://docs.python.org/3/library/functions.html#open].

	**kwargs – the keyword arguments that will be passed
to loads() and are described there.

If path is not an os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike], it will be assumed to be an
already-opened file object, and .read() will be applied
to extract the text.

If the os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] or file object contains some bytes
decodable as text, followed by some that is not (e.g. an ISIS
cube file), that’s fine, this function will just extract the
decodable text.

	
pvl.loads(s: str, parser=None, grammar=None, decoder=None, **kwargs)

	Deserialize the string, s, as a Python object.

	Parameters

	
	s – contains some PVL to parse.

	parser – defaults to pvl.parser.OmniParser().

	grammar – defaults to pvl.grammar.OmniGrammar().

	decoder – defaults to pvl.decoder.OmniDecoder().

	**kwargs – the keyword arguments to pass to the parser class
if parser is none.

	
pvl.dump(module, path, **kwargs)

	Serialize module as PVL text to the provided path.

	Parameters

	
	module – a PVLModule or dict-like object to serialize.

	path – an os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]

	**kwargs – the keyword arguments to pass to dumps().

If path is an os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike], it will attempt to be opened
and the serialized module will be written into that file via
the pathlib.Path.write_text() function, and will return
what that function returns.

If path is not an os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike], it will be assumed to be an
already-opened file object, and .write() will be applied
on that object to write the serialized module, and will return
what that function returns.

	
pvl.dumps(module, encoder=None, grammar=None, decoder=None, **kwargs) → str

	Returns a string where the module object has been serialized
to PVL syntax.

	Parameters

	
	module – a PVLModule or dict like object to serialize.

	encoder – defaults to pvl.parser.PDSLabelEncoder().

	grammar – defaults to pvl.grammar.ODLGrammar().

	decoder – defaults to pvl.decoder.ODLDecoder().

	**kwargs – the keyword arguments to pass to the encoder
class if encoder is none.

	
class pvl.PVLModule(*args, **kwargs)

	Bases: pvl.collections.OrderedMultiDict

	
class pvl.PVLGroup(*args, **kwargs)

	Bases: pvl.collections.PVLAggregation

	
class pvl.PVLObject(*args, **kwargs)

	Bases: pvl.collections.PVLAggregation

	
class pvl.Quantity

	Bases: pvl.collections.Quantity

A simple collections.namedtuple object to contain
a value and units parameter.

If you need more comprehensive units handling, you
may want to use the astropy.units.Quantity object,
the pint.Quantity object, or some other 3rd party
object. Please see the documentation on Quantities: Values and Units
for how to use 3rd party Quantity objects with pvl.

	
class pvl.Units

	Bases: pvl.collections.Quantity

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs or Ask for Features via Issues

We want to hear from you! You can report bugs, ask for new features,
or just raise issues or concerns via logging an Issue via our
GitHub repo [https://github.com/planetarypy/pvl/issues].

Fix Bugs or Implement Features

Look through the GitHub Issues for bugs to fix or feautures to implement.
If anything looks tractable to you, work on it. Most (if not all) PRs should
be based on an Issue, so if you’re thinking about doing some coding on a topic
that isn’t covered in an Issue, please author one so you can get some feedback
while you work on your PR.

Write Documentation

pvl could always use more documentation, whether as part of the
official pvl docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an Issue [https://github.com/planetarypy/pvl/issues].

Get Started!

Ready to contribute? Here’s how to set up pvl for local development.

	Fork the pvl repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pvl.git

	Install your local copy into a virtual environment like virtualenv
or conda. Assuming you have virtualenvwrapper installed, this is
how you set up your fork for local development:

$ mkvirtualenv pvl
$ cd pvl/
$ pip install -r requirements.txt

If you are a conda user:

$ cd pvl/
$ conda env create -n pvldev -f environment.yml
$ conda activate pvldev
$ pip install --no-deps -e .

The last pip install installs pvl in “editable” mode which facilitates
testing.

	Create a branch for local
development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests,
including testing other Python versions with tox:

$ make lint
$ make test
$ make test-all

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request [https://github.com/planetarypy/pvl/pulls].

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in HISTORY.rst and potentially update the README.rst
or other documentation files.

	The pull request should work for Python 3.6, 3.7, and 3.8. Check
https://travis-ci.org/github/planetarypy/pvl
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests/test_pvl.py

What to expect

We want to keep development moving forward, and you should expect
activity on your PR within a week or so.

Rules for Merging Pull Requests

Any change to resources in this repository must be through pull
requests (PRs). This applies to all changes to documentation, code,
binary files, etc. Even long term committers must use pull requests.

In general, the submitter of a PR is responsible for making changes
to the PR. Any changes to the PR can be suggested by others in the
PR thread (or via PRs to the PR), but changes to the primary PR
should be made by the PR author (unless they indicate otherwise in
their comments). In order to merge a PR, it must satisfy these conditions:

	Have been open for 24 hours.

	Have one approval.

	If the PR has been open for 1 week without approval or comment, then it
may be merged without any approvals.

Pull requests should sit for at least 24 hours to ensure that
contributors in other timezones have time to review. Consideration
should also be given to weekends and other holiday periods to ensure
active committers all have reasonable time to become involved in
the discussion and review process if they wish.

In order to encourage involvement and review, we encourage at least
one explicit approval from committers that are not the PR author.

However, in order to keep development moving along with our low number of
active contributors, if a PR has been open for a week without comment, then
it could be committed without an approval.

The default for each contribution is that it is accepted once no
committer has an objection, and the above requirements are
satisfied.

In the case of an objection being raised in a pull request by another
committer, all involved committers should seek to arrive at a
consensus by way of addressing concerns being expressed by discussion,
compromise on the proposed change, or withdrawal of the proposed
change.

If a contribution is controversial and committers cannot agree about
how to get it merged or if it should merge, then the developers
will escalate the matter to the PlanetaryPy TC for guidance. It
is expected that only a small minority of issues be brought to the
PlanetaryPy TC for resolution and that discussion and compromise
among committers be the default resolution mechanism.

Exceptions to the above are minor typo fixes or cosmetic changes
that don’t alter the meaning of a document. Those edits can be made
via a PR and the requirement for being open 24 h is waived in this
case.

PVL People

	A PVL Contributor is any individual creating or commenting
on an issue or pull request. Anyone who has authored a PR that was
merged should be listed in the AUTHORS.rst file.

	A PVL Committer is a subset of contributors who have been
given write access to the repository.

All contributors who get a non-trivial contribution merged can
become Committers. Individuals who wish to be considered for
commit-access may create an Issue or contact an existing Committer
directly.

Committers are expected to follow this policy and continue to send
pull requests, go through proper review, etc.

Credits

The pvl library was originally developed by Trevor Olson.

Authors

	Trevor Olson <trevor@heytrevor.com> (Original Author and former development lead)

	Sarah Braden <braden.sarah@gmail.com>

	Michael Aye <kmichael.aye@gmail.com>

	Austin Godber <godber@uberhip.com>

	Perry Vargas <perrybvargas@gmail.com>

	Benoit Seignovert [https://github.com/seignovert]

	Ross Beyer [https://github.com/rbeyer]

Acknowledgements

Thanks to Michael Aye, Andrew Annex, and Chase Million for valuable discussions during the
lead-up to the 1.0.0 release.

History

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

When updating this file, please add an entry for your change under
Not Yet Released and one of the following headings:

	Added - for new features.

	Changed - for changes in existing functionality.

	Deprecated - for soon-to-be removed features.

	Removed - for now removed features.

	Fixed - for any bug fixes.

	Security - in case of vulnerabilities.

If the heading does not yet exist under Not Yet Released, then add it
as a 3rd level heading, underlined with pluses (see examples below).

When preparing for a public release add a new 2nd level heading,
underlined with dashes under Not Yet Released with the version number
and the release date, in year-month-day format (see examples below).

Not Yet Released

1.3.2 (2022-02-05)

Fixed

	The parser was requesting the next token after an end-statement, even
though nothing was done with this token (in the future it could
be a comment that should be processed). In the very rare case
where all of the “data” bytes in a file with an attached PVL label
(like a .IMG or .cub file) actually convert to UTF with no
whitespace characters, that next token will take an unacceptable
amount of time to return, if it does at all. The parser now does
not request additional tokens once an end-statement is identified
(Issue 104).

1.3.1 (2022-02-05)

Fixed

	Deeply nested Aggregation Blocks (Object or Group) which had mis-matched
Block Names should now properly result in LexerErrors instead of
resulting in StopIteration Exceptions (Issue 100).

	The default “Omni” parsing strategy, now considers the ASCII NULL character
(“0”) a “reserved character.” The practical effect is that the
ASCII NULL can not be in parameter names or unquoted strings (but
would still be successfully parsed in quoted strings). This means
that PVL-text that might have incorrectly used ASCII NULLs as
delimiters will once again be consumed by our omnivorous parser
(Issue 98).

1.3.0 (2021-09-10)

Added

	pvl.collections.Quantity objects now have __int__() and __float__()
functions that will return the int and float versions of their
.value parameter to facilitate numeric operations with Quantity
objects (Issue 91).

	pvl.load() now has an encoding= parameter that is identical in usage
to the parameter passed to open(), and will attempt to decode the whole
file as if it had been encoded thusly. If it encounters a decoding error,
it will fall back to decoding the bytes one at a time as ASCII text (Issue 93).

Fixed

	If the PVL-text contained characters beyond the set allowed by the
PVL specification, the OmniGrammar would refuse to parse them.
This has been fixed to allow any valid character to be parsed,
so that if there are weird UTF characters in the PVL-text, you’ll get
those weird UTF characters in the returned dict-like. When the
stricter PVL, ODL, or PDS3 dialects are used to “load” PVL-text,
they will properly fail to parse this text (Issue 93).

	Empty parameters inside groups or objects (but not at the end), would
cause the default “Omni” parsing strategy to go into an infinite
loop. Empty parameters in PVL, ODL, and PDS3 continue to not be
allowed (Issue 95).

1.2.1 (2021-05-31)

Added

	So many tests, increased coverage by about 10%.

Fixed

	Attempting to import pvl.new without multidict being available,
will now properly yield an ImportError.

	The dump() and dumps() functions now properly overwritten in pvl.new.

	All encoders that descended from PVLEncoder didn’t properly have group_class and
object_class arguments to their constructors, now they do.

	The char_allowed() function in grammar objects now raises a more useful ValueError
than just a generic Exception.

	The new collections.PVLMultiDict wasn’t correctly inserting Mapping objects with
the insert_before() and insert_after() methods.

	The token.Token class’s __index__() function didn’t always properly return an
index.

	The token.Token class’s __float__() function would return int objects if the
token could be converted to int. Now always returns floats.

1.2.0 (2021-03-27)

Added

	Added a default_timezone parameter to grammar objects so that they could
both communicate whether they had a default timezone (if not None),
and what it was.

	Added a pvl.grammar.PDSGrammar class that specifies the default UTC
time offset.

	Added a pvl.decoder.PDSLabelDecoder class that properly enforces only
milisecond time precision (not microsecond as ODL allows), and does
not allow times with a +HH:MM timezone specifier. It does assume
any time without a timezone specifier is a UTC time.

	Added a real_cls parameter to the decoder classes, so that users can specify
an arbitrary type with which real numbers in the PVL-text could be returned in
the dict-like from the loaders (defaults to float as you’d expect).

	The encoders now support a broader range of real types to complement the decoders.

Changed

	Improved some build and test functionality.

	Moved the is_identifier() static function from the ODLEncoder to the ODLDecoder
where it probably should have always been.

Fixed

	Very long Python str objects that otherwise qualified as ODL/PDS3 Symbol Strings,
would get written out with single-quotes, but they would then be split across lines
via the formatter, so they should be written as Text Strings with double-quotes.
Better protections have been put in place.

	pvl.decoder.ODLDecoder now will return both “aware” and “naive”
datetime objects (as appropriate) since “local” times without a
timezone are allowed under ODL.

	pvl.decoder.ODLDecoder will now properly reject any unquoted string
that does not parse as an ODL Identifier.

	pvl.decoder.ODLDecoder will raise an exception if there is a seconds value
of 60 (which the PVLDecoder allows)

	pvl.encoder.ODLEncoder will raise an exception if given a “naive” time
object.

	pvl.encoder.PDSLabelEncoder will now properly raise an exception if
a time or datetime object cannot be represented with only milisecond
precision.

1.1.0 (2020-12-04)

Added

	Modified pvl_validate to more robustly deal with errors, and also provide
more error-reporting via -v and -vv.

	Modified ISISGrammar so that it can parse comments that begin with an octothorpe (#).

Fixed

	Altered documentation in grammar.py that was incorrectly indicating that
there were parameters that could be passed on object initiation that would
alter how those objects behaved.

1.0.1 (2020-09-21)

Fixed

	The PDSLabelEncoder was improperly raising an exception if the Python datetime
object to encode had a tzinfo component that had zero offset from UTC.

1.0.0 (2020-08-23)

This production version of the pvl library consists of significant
API and functionality changes from the 0.x version that has been
in use for 5 years (a credit to Trevor Olson’s skills). The
documentation has been significantly upgraded, and various granular
changes over the 10 alpha versions of 1.0.0 over the last 8 months
are detailed in their entries below. However, here is a high-level
overview of what changed from the 0.x version:

Added

	pvl.load() and pvl.dump() take all of the arguments that they could take
before (string containing a filename, byte streams, etc.), but now also accept any
os.PathLike object, or even an already-opened file object.

	pvl.loadu() function will load PVL text from URLs.

	Utility programs pvl_validate and pvl_translate were added, please see
the “Utility Programs” section of the documentation for more information.

	The library can now parse and encode PVL Values with Units expressions
with third-party quantity objects like astropy.units.Quantity and pint.Quantity.
Please see the “Quantities: Values and Units” section of the documentation.

	Implemented a new PVLMultiDict (optional, needs 3rd party multidict library) which
which has more pythonic behaviors than the existing OrderedMultiDict. Experiment
with getting it returned by the loaders by altering your import statement to
import pvl.new as pvl and then using the loaders as usual to get the new object
returned to you.

Changed

	Only guaranteed to work with Python 3.6 and above.

	Rigorously implemented the three dialects of PVL text: PVL itself,
ODL, and the PDS3 Label Standard. There is a fourth de-facto
dialect, that of ISIS cube labels that is also handled. Please see
the “Standards & Specifications” section of the documentation.

	There is now a default dialect for the dump functions: the PDS3 Label Standard.
This is different and more strict than before, but other output dialects are
possible. Please see the “Writing out PVL text” section in the documentation
for more information, and how to enable an output similar to the 0.x output.

	There are now pvl.collections and pvl.exceptions modules. There was previously
an internal pvl._collections module, and the exception classes were scattered through
the other modules.

Fixed

	All datetime.time and datetime.datetime objects returned from the loaders
are now timezone “aware.” Previously some were and some were not.

	Functionality to correctly parse dash (-) continuation lines in ISIS output is
now supported.

	The library now properly parses quoted strings that include backslashes.

Deprecated

	The pvl.collections.Units object is deprecated in favor of
the new pvl.collections.Quantity object (really a name-only change, no functionality
difference).

1.0.0-alpha.9 (2020-08-18)

	Minor addition to pvl.collections.MutableMappingSequence.

	Implemented PVLMultiDict which is based on the 3rd Party
multidict.MultiDict object as an option to use instead
of the default OrderedMultiDict. The new PVLMultiDict
is better aligned with the Python 3 way that Mapping
objects behave.

	Enhanced the existing OrderedMultiDict with some functionality
that extends its behavior closer to the Python 3 ideal, and
inserted warnings about how the retained non-Python-3
behaviors might be removed at the next major patch.

	Implemented pvl.new that can be included for those that wish
to try out what getting the new PVLMultiDict returned from
the loaders might be like by just changing an import statement.

1.0.0-alpha.8 (2020-08-01)

	Renamed the _collections module to just collections.

	Renamed the Units class to Quantity (Units remains, but has a deprecation warning).

	Defined a new ABC: pvl.collections.MutableMappingSequence

	More detail for these changes can be found in Issue #62.

1.0.0-alpha.7 (2020-07-29)

	Created a new exceptions.py module and grouped all pvl Exceptions
there. Addresses #58

	Altered the message that LexerError emits to provide context
around the character that caused the error.

	Added bump2version configuration file.

1.0.0-alpha.6 (2020-07-27)

	Enforced that all datetime.time and datetime.datetime objects
returned should be timezone “aware.” This breaks 0.x functionality
where some were and some weren’t. Addresses #57.

1.0.0-alpha.5 (2020-05-30)

	ISIS creates PVL text with unquoted plus signs (“+”), needed to adjust
the ISISGrammar and OmniGrammar objects to parse this properly (#59).

	In the process of doing so, realized that we have some classes that
optionally take a grammar and a decoder, and if they aren’t given, to default.
However, a decoder has a grammar object, so if a grammar isn’t provided, but
a decoder is, the grammar should be taken from the decoder, otherwise you
could get confusing behavior.

	Updated pvl_validate to be explicit about these arguments.

	Added a –version argument to both pvl_translate and pvl_validate.

1.0.0.-alpha.4 (2020-05-29)

	Added the pvl.loadu() function as a convenience function to load PVL text from
URLs.

1.0.0-alpha.3 (2020-05-28)

	Implemented tests in tox and Travis for Python 3.8, and discovered a bug
that we fixed (#54).

1.0.0-alpha.2 (2020-04-18)

	The ability to deal with 3rd-party ‘quantity’ objects like astropy.units.Quantity
and pint.Quantity was added and documented, addresses #22.

1.0.0-alpha.1 (2020-04-17)

This is a bugfix on 1.0.0-alpha to properly parse scientific notation
and deal with properly catching an error.

1.0.0-alpha (winter 2019-2020)

This is the alpha version of release 1.0.0 for pvl, and the items
here and in other ‘alpha’ entries may be consolidated when 1.0.0
is released. This work is categorized as 1.0.0-alpha because
backwards-incompatible changes are being introduced to the codebase.

	Refactored code so that it will no longer support Python 2,
and is only guaranteed to work with Python 3.6 and above.

	Rigorously implemented the three dialects of PVL text: PVL itself,
ODL, and the PDS3 Label Standard. There is a fourth de-facto
dialect, that of ISIS cube labels that is also handled. These
dialects each have their own grammars, parsers, decoders, and
encoders, and there are also some ‘Omni’ versions of same that
handle the widest possible range of PVL text.

	When parsing via the loaders, pvl continues to consume as
wide a variety of PVL text as is reasonably possible, just like
always. However, now when encoding via the dumpers, pvl will
default to writing out PDS3 Label Standard format PVL text, one
of the strictest dialects, but other options are available. This
behavior is different from the pre-1.0 version, which wrote out
more generic PVL text.

	Removed the dependency on the six library that provided Python 2
compatibility.

	Removed the dependency on the pytz library that provided ‘timezone’
support, as that functionality is replaced with the Standard Library’s
datetime module.

	The private pvl/_numbers.py file was removed, as its capability is now
accomplished with the Python Standard Library.

	The private pvl/_datetimes.py file was removed, as its capability is now
accomplished with the Standard Library’s datetime module.

	the private pvl/_strings.py file was removed, as its capabilities are now
mostly replaced with the new grammar module and some functions in other new
modules.

	Internally, the library is now working with string objects, not byte literals,
so the pvl/stream.py module is no longer needed.

	Added an optional dependency on the 3rd party dateutil library, to parse
more exotic date and time formats. If this library is not present, the
pvl library will gracefully fall back to not parsing more exotic
formats.

	Implmented a more formal approach to parsing PVL text: The properties
of the PVL language are represented by a grammar object. A string is
broken into tokens by the lexer function. Those tokens are parsed by a
parser object, and when a token needs to be converted to a Python object,
a decoder object does that job. When a Python object must be converted to
PVL text, an encoder object does that job.

	Since the tests in tests/test_decoder.py and tests/test_encoder.py
were really just exercising the loader and dumper functions, those tests were
moved to tests/test_pvl.py, but all still work (with light modifications for
the new defaults). Unit tests were added for most of the new classes and
functions. All docstring tests now also pass doctest testing and are now
included in the make test target.

	Functionality to correctly parse dash (-) continuation lines written by ISIS
as detailed in #34 is implemented and tested.

	Functionality to use pathlib.Path objects for pvl.load() and
pvl.dump() as requested in #20 and #31 is implemented and tested.

	Functionality to accept already-opened file objects that were opened in
‘r’ mode or ‘rb’ mode as alluded to in #6 is implemented and tested.

	The library now properly parses quoted strings that include backslashes
as detailed in #33.

	Utility programs pvl_validate and pvl_translate were added.

	Documentation was updated and expanded.

0.3.0 (2017-06-28)

	Create methods to add items to the label

	Give user option to allow the parser to succeed in parsing broken labels

0.2.0 (2015-08-13)

	Drastically increase test coverage.

	Lots of bug fixes.

	Add Cube and PDS encoders.

	Cleanup README.

	Use pvl specification terminology.

	Added element access by index and slice.

0.1.1 (2015-06-01)

	Fixed issue with reading Pancam PDS Products.

0.1.0 (2015-05-30)

	First release on PyPI.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pvl	

 	
 	
 pvl.collections	

 	
 	
 pvl.decoder	

 	
 	
 pvl.encoder	

 	
 	
 pvl.exceptions	

 	
 	
 pvl.grammar	

 	
 	
 pvl.lexer	

 	
 	
 pvl.parser	

 	
 	
 pvl.pvl_translate	

 	
 	
 pvl.pvl_validate	

 	
 	
 pvl.token	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --version

 	pvl_translate command line option

 	pvl_validate command line option

 	
 -h, --help

 	pvl_translate command line option

 	pvl_validate command line option

 	
 	
 -of {PDS3,ODL,ISIS,PVL,JSON}, --output_format {PDS3,ODL,ISIS,PVL,JSON}

 	pvl_translate command line option

 	
 -v, --verbose

 	pvl_validate command line option

A

 	
 	add_quantity_cls() (pvl.encoder.PVLEncoder method)

 	adjust_reserved_characters() (pvl.grammar.ISISGrammar static method)

 	aggregation_cls() (pvl.parser.PVLParser method)

 	aggregation_keywords (pvl.grammar.PVLGrammar attribute)

 	
 	append() (pvl.collections.MutableMappingSequence method)

 	(pvl.collections.OrderedMultiDict method)

 	arg_parser() (in module pvl.pvl_translate)

 	(in module pvl.pvl_validate)

B

 	
 	binary_re (pvl.grammar.PVLGrammar attribute)

 	
 	build_line() (in module pvl.pvl_validate)

C

 	
 	char_allowed() (pvl.grammar.ODLGrammar method)

 	(pvl.grammar.OmniGrammar method)

 	(pvl.grammar.PVLGrammar method)

 	clear() (pvl.collections.OrderedMultiDict method)

 	COMMENT (pvl.lexer.Preserve attribute)

 	
 	comments (pvl.grammar.ISISGrammar attribute)

 	(pvl.grammar.OmniGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	copy() (pvl.collections.OrderedMultiDict method)

 	count_aggs() (pvl.encoder.PDSLabelEncoder method)

D

 	
 	d (pvl.grammar.PVLGrammar attribute)

 	date_formats (pvl.grammar.PVLGrammar attribute)

 	datetime_formats (pvl.grammar.PVLGrammar attribute)

 	decode() (pvl.decoder.PVLDecoder method)

 	decode_datetime() (pvl.decoder.ODLDecoder method)

 	(pvl.decoder.OmniDecoder method)

 	(pvl.decoder.PDSLabelDecoder method)

 	(pvl.decoder.PVLDecoder method)

 	decode_decimal() (pvl.decoder.PVLDecoder method)

 	decode_non_decimal() (pvl.decoder.ODLDecoder method)

 	(pvl.decoder.OmniDecoder method)

 	(pvl.decoder.PVLDecoder method)

 	decode_quantity() (pvl.decoder.PVLDecoder method)

 	decode_quoted_string() (pvl.decoder.ODLDecoder method)

 	(pvl.decoder.PVLDecoder method)

 	
 	decode_simple_value() (pvl.decoder.PVLDecoder method)

 	decode_unquoted_string() (pvl.decoder.ODLDecoder method)

 	(pvl.decoder.OmniDecoder method)

 	(pvl.decoder.PVLDecoder method)

 	default_timezone (pvl.grammar.ODLGrammar attribute)

 	(pvl.grammar.PDSGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	delimiters (pvl.grammar.PVLGrammar attribute)

 	dict_delitem (in module pvl.collections)

 	dict_setitem (in module pvl.collections)

 	discard() (pvl.collections.OrderedMultiDict method)

 	dump() (in module pvl)

 	(pvl.pvl_translate.JSONWriter method)

 	(pvl.pvl_translate.PVLWriter method)

 	(pvl.pvl_translate.Writer method)

 	dumps() (in module pvl)

E

 	
 	EmptyValueAtLine (class in pvl.parser)

 	encode() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PDSLabelEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	encode_aggregation_block() (pvl.encoder.PDSLabelEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	encode_assignment() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	encode_date() (pvl.encoder.PVLEncoder static method)

 	encode_datetime() (pvl.encoder.PVLEncoder method)

 	encode_datetype() (pvl.encoder.PVLEncoder method)

 	encode_module() (pvl.encoder.PVLEncoder method)

 	encode_quantity() (pvl.encoder.PVLEncoder method)

 	encode_sequence() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	encode_set() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PDSLabelEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	
 	encode_setseq() (pvl.encoder.PVLEncoder method)

 	encode_simple_value() (pvl.encoder.PVLEncoder method)

 	encode_string() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PDSLabelEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	encode_time() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PDSLabelEncoder method)

 	(pvl.encoder.PVLEncoder static method)

 	encode_units() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	encode_value() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	encode_value_units() (pvl.encoder.PVLEncoder method)

 	end_statements (pvl.grammar.PVLGrammar attribute)

 	extend() (pvl.collections.OrderedMultiDict method)

F

 	
 	FALSE (pvl.lexer.Preserve attribute)

 	false_keyword (pvl.grammar.PVLGrammar attribute)

 	
 file

 	pvl_validate command line option

 	
 	firstpos() (in module pvl.exceptions)

 	for_try_except() (in module pvl.decoder)

 	format() (pvl.encoder.PVLEncoder method)

 	format_effectors (pvl.grammar.PVLGrammar attribute)

G

 	
 	get() (pvl.collections.OrderedMultiDict method)

 	getall() (pvl.collections.MutableMappingSequence method)

 	(pvl.collections.OrderedMultiDict method)

 	getlist() (pvl.collections.OrderedMultiDict method)

 	
 	group_keywords (pvl.grammar.ISISGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	group_pref_keywords (pvl.grammar.ISISGrammar attribute)

 	(pvl.grammar.ODLGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

H

 	
 	hex_re (pvl.grammar.PVLGrammar attribute)

I

 	
 	index() (pvl.collections.ItemsView method)

 	(pvl.collections.KeysView method)

 	(pvl.collections.ValuesView method)

 	
 infile

 	pvl_translate command line option

 	insert() (pvl.collections.OrderedMultiDict method)

 	insert_after() (pvl.collections.OrderedMultiDict method)

 	insert_before() (pvl.collections.OrderedMultiDict method)

 	is_assignment_statement() (pvl.encoder.ODLEncoder method)

 	is_begin_aggregation() (pvl.token.Token method)

 	is_comment() (pvl.token.Token method)

 	is_datetime() (pvl.token.Token method)

 	is_decimal() (pvl.token.Token method)

 	is_delimiter() (pvl.token.Token method)

 	is_end_statement() (pvl.token.Token method)

 	is_identifier() (pvl.decoder.ODLDecoder static method)

 	is_leap_seconds() (pvl.decoder.PVLDecoder method)

 	is_non_decimal() (pvl.token.Token method)

 	
 	is_numeric() (pvl.token.Token method)

 	is_parameter_name() (pvl.token.Token method)

 	is_PDSgroup() (pvl.encoder.PDSLabelEncoder method)

 	is_quote() (pvl.token.Token method)

 	is_quoted_string() (pvl.token.Token method)

 	is_scalar() (pvl.encoder.ODLEncoder method)

 	is_simple_value() (pvl.token.Token method)

 	is_space() (pvl.token.Token method)

 	is_string() (pvl.token.Token method)

 	is_symbol() (pvl.encoder.ODLEncoder method)

 	is_unquoted_string() (pvl.token.Token method)

 	is_WSC() (pvl.token.Token method)

 	ISISEncoder (class in pvl.encoder)

 	ISISGrammar (class in pvl.grammar)

 	isnumeric() (pvl.token.Token method)

 	isspace() (pvl.token.Token method)

 	items() (pvl.collections.OrderedMultiDict method)

 	ItemsView (class in pvl.collections)

J

 	
 	JSONWriter (class in pvl.pvl_translate)

K

 	
 	key_index() (pvl.collections.OrderedMultiDict method)

 	
 	keys() (pvl.collections.OrderedMultiDict method)

 	KeysView (class in pvl.collections)

L

 	
 	leap_second_Yj_re (pvl.grammar.ODLGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	leap_second_Ymd_re (pvl.grammar.ODLGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	lex_char() (in module pvl.lexer)

 	lex_comment() (in module pvl.lexer)

 	lex_continue() (in module pvl.lexer)

 	lex_multichar_comments() (in module pvl.lexer)

 	
 	lex_preserve() (in module pvl.lexer)

 	lex_singlechar_comments() (in module pvl.lexer)

 	lexer() (in module pvl.lexer)

 	LexerError

 	linecount() (in module pvl.exceptions)

 	load() (in module pvl)

 	loads() (in module pvl)

 	lstrip() (pvl.token.Token method)

M

 	
 	main() (in module pvl.pvl_translate)

 	(in module pvl.pvl_validate)

 	
 	MappingView (class in pvl.collections)

 	MutableMappingSequence (class in pvl.collections)

N

 	
 	needs_quotes() (pvl.encoder.ODLEncoder method)

 	(pvl.encoder.PVLEncoder method)

 	NONDECIMAL (pvl.lexer.Preserve attribute)

 	nondecimal_pre_re (pvl.grammar.ODLGrammar attribute)

 	(pvl.grammar.OmniGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	
 	nondecimal_re (pvl.grammar.ODLGrammar attribute)

 	(pvl.grammar.OmniGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	none_keyword (pvl.grammar.PVLGrammar attribute)

 	numeric_start_chars (pvl.grammar.PVLGrammar attribute)

O

 	
 	object_keywords (pvl.grammar.ISISGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	object_pref_keywords (pvl.grammar.ISISGrammar attribute)

 	(pvl.grammar.ODLGrammar attribute)

 	(pvl.grammar.PVLGrammar attribute)

 	octal_re (pvl.grammar.PVLGrammar attribute)

 	ODLDecoder (class in pvl.decoder)

 	ODLEncoder (class in pvl.encoder)

 	
 	ODLGrammar (class in pvl.grammar)

 	ODLParser (class in pvl.parser)

 	OmniDecoder (class in pvl.decoder)

 	OmniGrammar (class in pvl.grammar)

 	OmniParser (class in pvl.parser)

 	OrderedMultiDict (class in pvl.collections)

 	
 outfile

 	pvl_translate command line option

P

 	
 	p (pvl.grammar.PVLGrammar attribute)

 	parse() (pvl.parser.OmniParser method)

 	(pvl.parser.PVLParser method)

 	parse_aggregation_block() (pvl.parser.PVLParser method)

 	parse_around_equals() (pvl.parser.PVLParser method)

 	parse_assignment_statement() (pvl.parser.OmniParser method)

 	(pvl.parser.PVLParser method)

 	parse_begin_aggregation_statement() (pvl.parser.PVLParser method)

 	parse_end_aggregation() (pvl.parser.PVLParser method)

 	parse_end_statement() (pvl.parser.PVLParser method)

 	parse_module() (pvl.parser.PVLParser method)

 	parse_module_post_hook() (pvl.parser.OmniParser method)

 	(pvl.parser.PVLParser method)

 	parse_sequence() (pvl.parser.PVLParser method)

 	parse_set() (pvl.parser.ODLParser method)

 	(pvl.parser.PVLParser method)

 	parse_statement_delimiter() (pvl.parser.PVLParser static method)

 	parse_units() (pvl.parser.ODLParser method)

 	(pvl.parser.PVLParser method)

 	parse_value() (pvl.parser.PVLParser method)

 	parse_value_post_hook() (pvl.parser.OmniParser method)

 	(pvl.parser.PVLParser method)

 	parse_WSC_until() (pvl.parser.PVLParser static method)

 	ParseError

 	PDSGrammar (class in pvl.grammar)

 	PDSLabelDecoder (class in pvl.decoder)

 	PDSLabelEncoder (class in pvl.encoder)

 	pop() (pvl.collections.OrderedMultiDict method)

 	popall() (pvl.collections.MutableMappingSequence method)

 	(pvl.collections.OrderedMultiDict method)

 	popitem() (pvl.collections.OrderedMultiDict method)

 	Preserve (class in pvl.lexer)

 	pvl (module)

 	
 	pvl.collections (module)

 	pvl.decoder (module)

 	pvl.encoder (module)

 	pvl.exceptions (module)

 	pvl.grammar (module)

 	pvl.lexer (module)

 	pvl.parser (module)

 	pvl.pvl_translate (module)

 	pvl.pvl_validate (module)

 	pvl.token (module)

 	pvl_flavor() (in module pvl.pvl_validate)

 	
 pvl_translate command line option

 	--version

 	-h, --help

 	-of {PDS3,ODL,ISIS,PVL,JSON}, --output_format {PDS3,ODL,ISIS,PVL,JSON}

 	infile

 	outfile

 	
 pvl_validate command line option

 	--version

 	-h, --help

 	-v, --verbose

 	file

 	PVLAggregation (class in pvl.collections)

 	PVLDecoder (class in pvl.decoder)

 	PVLEncoder (class in pvl.encoder)

 	PVLGrammar (class in pvl.grammar)

 	PVLGroup (class in pvl)

 	(class in pvl.collections)

 	PVLModule (class in pvl)

 	(class in pvl.collections)

 	PVLObject (class in pvl)

 	(class in pvl.collections)

 	PVLParser (class in pvl.parser)

 	PVLWriter (class in pvl.pvl_translate)

Q

 	
 	Quantity (class in pvl)

 	(class in pvl.collections)

 	QuantityError

 	
 	QuantTup (class in pvl.encoder)

 	QUOTE (pvl.lexer.Preserve attribute)

 	quotes (pvl.grammar.PVLGrammar attribute)

R

 	
 	replace() (pvl.token.Token method)

 	report() (in module pvl.pvl_validate)

 	report_many() (in module pvl.pvl_validate)

 	
 	reserved_characters (pvl.grammar.PVLGrammar attribute)

 	reserved_keywords (pvl.grammar.PVLGrammar attribute)

 	rstrip() (pvl.token.Token method)

S

 	
 	sequence_delimiters (pvl.grammar.PVLGrammar attribute)

 	set_delimiters (pvl.grammar.PVLGrammar attribute)

 	
 	spacing_characters (pvl.grammar.PVLGrammar attribute)

 	split() (pvl.token.Token method)

 	strip() (pvl.token.Token method)

T

 	
 	t (pvl.grammar.PVLGrammar attribute)

 	time_formats (pvl.grammar.PVLGrammar attribute)

 	
 	Token (class in pvl.token)

 	true_keyword (pvl.grammar.PVLGrammar attribute)

U

 	
 	UNIT (pvl.lexer.Preserve attribute)

 	Units (class in pvl)

 	(class in pvl.collections)

 	
 	units_delimiters (pvl.grammar.PVLGrammar attribute)

 	update() (pvl.collections.OrderedMultiDict method)

V

 	
 	values() (pvl.collections.OrderedMultiDict method)

 	
 	ValuesView (class in pvl.collections)

W

 	
 	whitespace (pvl.grammar.PVLGrammar attribute)

 	
 	Writer (class in pvl.pvl_translate)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to pvl’s documentation!

 		
 pvl

 		
 Installation

 		
 Basic Usage

 		
 Contributing

 		
 Parsing PVL text

 		
 From a File

 		
 Simple Use

 		
 Detailed Use

 		
 From a String

 		
 Simple Use

 		
 Detailed Use

 		
 From a URL

 		
 Return non-standard objects

 		
 Writing out PVL text

 		
 Writing PVL Text to a File

 		
 Simple Use

 		
 Changing A Key

 		
 Writing PVL Text to a String

 		
 Simple Use

 		
 Adding A Key

 		
 Example with an ISIS cube file

 		
 PVL text for ISIS program consumption

 		
 Pre-1.0 pvl dump behavior

 		
 Quantities: Values and Units

 		
 Getting other quantity objects from PVL text

 		
 Writing out other quantity objects to PVL text

 		
 astropy.units.Quantity

 		
 pint.Quantity

 		
 Utility Programs

 		
 pvl_translate

 		
 pvl_validate

 		
 Standards & Specifications

 		
 Parameter Value Language (PVL)

 		
 Object Description Language (ODL)

 		
 PDS3 Standard

 		
 ISIS Cube Label format

 		
 pvl

 		
 pvl package

 		
 Submodules

 		
 pvl.collections module

 		
 pvl.decoder module

 		
 pvl.encoder module

 		
 pvl.exceptions module

 		
 pvl.grammar module

 		
 pvl.lexer module

 		
 pvl.new module

 		
 pvl.parser module

 		
 pvl.pvl_translate module

 		
 pvl.pvl_validate module

 		
 pvl.token module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs or Ask for Features via Issues

 		
 Fix Bugs or Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 What to expect

 		
 Rules for Merging Pull Requests

 		
 PVL People

 		
 Credits

 		
 Authors

 		
 Acknowledgements

 		
 History

 		
 Not Yet Released

 		
 1.3.2 (2022-02-05)

 		
 Fixed

 		
 1.3.1 (2022-02-05)

 		
 Fixed

 		
 1.3.0 (2021-09-10)

 		
 Added

 		
 Fixed

 		
 1.2.1 (2021-05-31)

 		
 Added

 		
 Fixed

 		
 1.2.0 (2021-03-27)

 		
 Added

 		
 Changed

 		
 Fixed

 		
 1.1.0 (2020-12-04)

 		
 Added

 		
 Fixed

 		
 1.0.1 (2020-09-21)

 		
 Fixed

 		
 1.0.0 (2020-08-23)

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Deprecated

 		
 1.0.0-alpha.9 (2020-08-18)

 		
 1.0.0-alpha.8 (2020-08-01)

 		
 1.0.0-alpha.7 (2020-07-29)

 		
 1.0.0-alpha.6 (2020-07-27)

 		
 1.0.0-alpha.5 (2020-05-30)

 		
 1.0.0.-alpha.4 (2020-05-29)

 		
 1.0.0-alpha.3 (2020-05-28)

 		
 1.0.0-alpha.2 (2020-04-18)

 		
 1.0.0-alpha.1 (2020-04-17)

 		
 1.0.0-alpha (winter 2019-2020)

 		
 0.3.0 (2017-06-28)

 		
 0.2.0 (2015-08-13)

 		
 0.1.1 (2015-06-01)

 		
 0.1.0 (2015-05-30)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

